Highly Broadband Absorber Using Plasmonic Titanium Carbide (MXene)

Control of light transmission and reflection through nanostructured materials has led to demonstration of metamaterial absorbers that have augmented the performance of energy harvesting applications of several optoelectronic and nanophotonic systems. Here, for the first time, a broadband plasmonic metamaterial absorber is fabricated using two-dimensional titanium carbide (Ti3C2Tx) MXene. Arrays of nanodisks made of Ti3C2Tx exhibit strong localized surface plasmon resonances at near-infrared frequencies. By exploiting the scattering enhancement at the resonances and the optical losses inherent to Ti3C2Tx MXene, high-efficiency absorption (∼90%) for a wide wavelength window of incident illumination (∼1.55 μm) has been achieved.

[1]  L. Kong,et al.  Flexible and free-standing 2D titanium carbide film decorated with manganese oxide nanoparticles as a high volumetric capacity electrode for supercapacitor , 2017 .

[2]  X. Zhang,et al.  A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation , 2008 .

[3]  Heng Wu,et al.  Ti3C2 MXenes with Modified Surface for High-Performance Electromagnetic Absorption and Shielding in the X-Band. , 2016, ACS applied materials & interfaces.

[4]  Young In Jhon,et al.  Metallic MXene Saturable Absorber for Femtosecond Mode‐Locked Lasers , 2017, Advanced materials.

[5]  A. Kildishev,et al.  Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber , 2014, Advanced materials.

[6]  Pooi See Lee,et al.  Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications , 2017 .

[7]  Yuanqing Yang,et al.  Large‐Area Ultrabroadband Absorber for Solar Thermophotovoltaics Based on 3D Titanium Nitride Nanopillars , 2017 .

[8]  Lingling Wang,et al.  Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber , 2016, Scientific Reports.

[9]  Pierre-Louis Taberna,et al.  Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides , 2017, Nature Energy.

[10]  Suntharampillai Thevuthasan,et al.  Selective plasmonic gas sensing: H2, NO2, and CO spectral discrimination by a single Au-CeO2 nanocomposite film. , 2012, Analytical chemistry.

[11]  Y. Gogotsi,et al.  One-step Solution Processing of Ag, Au and Pd@MXene Hybrids for SERS , 2016, Scientific Reports.

[12]  Peng Wang,et al.  MXene Ti3C2: An Effective 2D Light-to-Heat Conversion Material. , 2017, ACS nano.

[13]  S. Bozhevolnyi,et al.  Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons , 2009 .

[14]  Hao‐Bin Zhang,et al.  Hydrophobic, Flexible, and Lightweight MXene Foams for High‐Performance Electromagnetic‐Interference Shielding , 2017, Advanced materials.

[15]  Chang E. Ren,et al.  Fabrication of Ti3C2Tx MXene Transparent Thin Films with Tunable Optoelectronic Properties , 2016 .

[16]  Thomas Søndergaard,et al.  General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators. , 2007, Optics express.

[17]  Y. Gogotsi,et al.  Synthesis of two-dimensional materials by selective extraction. , 2015, Accounts of chemical research.

[18]  S. Wen,et al.  Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material. , 2015, Optics express.

[19]  P. Moreau,et al.  Enhanced and tunable surface plasmons in two-dimensional Ti 3 C 2 stacks: Electronic structure versus boundary effects , 2014 .

[20]  W. Que,et al.  Improved capacitance of nitrogen-doped delaminated two-dimensional titanium carbide by urea-assisted synthesis , 2017 .

[21]  Yia-Chung Chang,et al.  Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays. , 2012, Optics express.

[22]  Sergey I. Bozhevolnyi,et al.  Broadband near-infrared metamaterial absorbers utilizing highly lossy metals , 2016, Scientific Reports.

[23]  Vladimir M. Shalaev,et al.  Highly directional spaser array for the red wavelength region , 2014 .

[24]  A. Sinitskii,et al.  Effect of Synthesis on Quality, Electronic Properties and Environmental Stability of Individual Monolayer Ti3C2 MXene Flakes , 2016 .

[25]  M. Naguib Two-Dimensional Transition-Metal Carbides and Carbonitrides , 2017 .

[26]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[27]  Yury Gogotsi,et al.  Charge- and Size-Selective Ion Sieving Through Ti3C2Tx MXene Membranes. , 2015, The journal of physical chemistry letters.

[28]  A. Kildishev,et al.  Solar-Powered Plasmon-Enhanced Heterogeneous Catalysis , 2016 .

[29]  Y. Gogotsi,et al.  Highly Conductive Optical Quality Solution‐Processed Films of 2D Titanium Carbide , 2016 .

[30]  S. Elahi,et al.  Electronic and optical properties of 2D graphene-like compounds titanium carbides and nitrides: DFT calculations , 2014 .

[31]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[32]  D. Poulikakos,et al.  A Rapid Response Thin-Film Plasmonic-Thermoelectric Light Detector , 2016, Scientific Reports.

[33]  Wei Li,et al.  Probing and controlling photothermal heat generation in plasmonic nanostructures. , 2013, Nano letters.

[34]  Achieving ultranarrow graphene perfect absorbers by exciting guided-mode resonance of one-dimensional photonic crystals , 2016, Scientific reports.

[35]  L. Verslegers,et al.  Planar lenses based on nanoscale slit arrays in a metallic film , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[36]  R. V. Van Duyne,et al.  Localized surface plasmon resonance spectroscopy and sensing. , 2007, Annual review of physical chemistry.

[37]  Yury Gogotsi,et al.  Electromagnetic interference shielding with 2D transition metal carbides (MXenes) , 2016, Science.

[38]  Sailing He,et al.  Ultrabroadband strong light absorption based on thin multilayered metamaterials , 2013, 1306.3289.

[39]  Pierre Berini,et al.  Surface plasmon photodetectors and their applications , 2014 .

[40]  S. Wen,et al.  Molybdenum disulfide (MoS₂) as a broadband saturable absorber for ultra-fast photonics. , 2014, Optics express.

[41]  Yury Gogotsi,et al.  NMR reveals the surface functionalisation of Ti3C2 MXene. , 2016, Physical chemistry chemical physics : PCCP.

[42]  D. Fan,et al.  Broadband Nonlinear Photonics in Few‐Layer MXene Ti3C2Tx (T = F, O, or OH) , 2018 .

[43]  Yury Gogotsi,et al.  2D metal carbides and nitrides (MXenes) for energy storage , 2017 .

[44]  M. Barsoum,et al.  Electronic properties of freestanding Ti3C2Tx MXene monolayers , 2016 .

[45]  A. Yamada,et al.  Sodium-Ion Intercalation Mechanism in MXene Nanosheets. , 2016, ACS nano.

[46]  Jing Wang,et al.  High performance optical absorber based on a plasmonic metamaterial , 2010 .

[47]  Kevin M. Cook,et al.  Transparent Conductive Two-Dimensional Titanium Carbide Epitaxial Thin Films , 2014, Chemistry of materials : a publication of the American Chemical Society.

[48]  A. Kildishev,et al.  Planar Photonics with Metasurfaces , 2013, Science.

[49]  Koray Aydin,et al.  Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. , 2011, Nature communications.

[50]  Yury Gogotsi,et al.  Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene) , 2017 .

[51]  Willie J Padilla,et al.  Metamaterial Electromagnetic Wave Absorbers , 2012, Advanced materials.

[52]  M. Farle,et al.  Controlling the conductivity of Ti3C2 MXenes by inductively coupled oxygen and hydrogen plasma treatment and humidity , 2017 .

[53]  G. Stucky,et al.  On the plasmonic photovoltaic. , 2014, ACS nano.

[54]  Romain Quidant,et al.  Thermo‐plasmonics: using metallic nanostructures as nano‐sources of heat , 2013 .

[55]  Y. Gogotsi,et al.  Two-Dimensional Titanium Carbide (MXene) as Surface-Enhanced Raman Scattering Substrate , 2017 .

[56]  Jagjit Nanda,et al.  Synthesis and Characterization of 2D Molybdenum Carbide (MXene) , 2016 .

[57]  Sergey I. Bozhevolnyi,et al.  Gap plasmon-based metasurfaces for total control of reflected light , 2013, Scientific Reports.

[58]  Yonggang Wang,et al.  Ultrafast pulse generation with black phosphorus solution saturable absorber , 2017 .