AGGREGATION KINETICS VIA SMOLUCHOWSKI'S EQUATION

The use of Smoluchowski's coagulation equation to model aggregation phenomena is discussed. A computer simulation of 4096 aggregating particles on a lattice of 65536 sites is shown to be well described by Smoluchowski's equation with a constant coagulation kernel.

[1]  J. Seinfeld,et al.  On existence of steady-state solutions to the coagulation equations , 1982 .

[2]  Monte Carlo simulation of diffusion controlled colloid growth rates in two and three dimensions , 1984 .

[3]  J. B. McLeod,et al.  ON AN INFINITE SET OF NON-LINEAR DIFFERENTIAL EQUATIONS , 1962 .

[4]  W. T. Scott,et al.  Analytic Studies of Cloud Droplet Coalescence I , 1968 .

[5]  F. Leyvraz,et al.  Existence and properties of post-gel solutions for the kinetic equations of coagulation , 1983 .

[6]  Robert M. Ziff,et al.  Critical Properties for Gelation: A Kinetic Approach , 1982 .

[7]  Robert M. Ziff,et al.  Kinetics of polymerization , 1980 .

[8]  Robert M. Ziff,et al.  Kinetics of polymer gelation , 1980 .

[9]  Walter H. Stockmayer,et al.  Theory of Molecular Size Distribution and Gel Formation in Branched‐Chain Polymers , 1943 .

[10]  Robert M. Ziff,et al.  Coagulation equations with gelation , 1983 .

[11]  Robert M. Ziff,et al.  Kinetics of gelation and universality , 1983 .

[12]  L. Sander,et al.  Diffusion-limited aggregation, a kinetic critical phenomenon , 1981 .

[13]  F. Leyvraz,et al.  Singularities in the kinetics of coagulation processes , 1981 .

[14]  P. Meakin Formation of fractal clusters and networks by irreversible diffusion-limited aggregation , 1983 .

[15]  R. J. Cohen,et al.  Equilibrium and kinetic theory of polymerization and the sol-gel transition , 1982 .

[16]  Per Arne Rikvold,et al.  Simulations of a stochastic model for cluster growth on a square lattice , 1982 .

[17]  F. Family Self-similarity in irreversible kinetic gelation , 1983 .