Predictive vector quantization of 3-D mesh geometry by representation of vertices in local coordinate systems

A large family of lossy 3-D mesh geometry compression schemes operate by predicting the position of each vertex from the coded neighboring vertices and encoding the prediction error vectors. In this work, we first employ entropy constrained extensions of the predictive vector quantization and asymptotically closed loop predictive vector quantization techniques that have been suggested in [3] for coding these prediction error vectors. Then we propose the representation of the prediction error vectors in a local coordinate system with an axis coinciding with the surface normal vector in order to cluster the prediction error vectors around a 2-D subspace. We adopt a least squares approach to estimate the surface normal vector from the non-coplanar, previously coded neighboring vertices. Our simulation results demonstrate that the prediction error vectors can be more efficiently vector quantized by representation in local coordinate systems than in global coordinate systems.

[1]  M. Isenburg Compressing Polygon Mesh Connectivity with Degree Duality Prediction , 2002, Graphics Interface.

[2]  Pierre Alliez,et al.  Angle‐Analyzer: A Triangle‐Quad Mesh Codec , 2002, Comput. Graph. Forum.

[3]  Junlin Li,et al.  Vector Quantization in Multi-Resolution Mesh Compression , 2005 .

[4]  Paolo Cignoni,et al.  Metro: Measuring Error on Simplified Surfaces , 1998, Comput. Graph. Forum.

[5]  Andrei Khodakovsky,et al.  Progressive geometry compression , 2000, SIGGRAPH.

[6]  Ulug Bayazit,et al.  Predictive vector quantization of 3-D polygonal mesh geometry by representation of vertices in local coordinate systems , 2005, 2005 13th European Signal Processing Conference.

[7]  Gabriel Taubin,et al.  Geometric compression through topological surgery , 1998, TOGS.

[8]  R. Ladner Entropy-constrained Vector Quantization , 2000 .

[9]  A. Khodakovsky Normal Mesh Compression , 2000 .

[10]  Pierre Alliez,et al.  Near-Optimal Connectivity Encoding of 2-Manifold Polygon Meshes , 2002, Graph. Model..

[11]  D. Cohen-Or,et al.  Multi-way Geometry Encoding , 2002 .

[12]  Ghassan Al-Regib,et al.  Vector Quantization in Multiresolution Mesh Compression , 2006, IEEE Signal Processing Letters.

[13]  Craig Gotsman,et al.  3D Mesh Compression Using Fixed Spectral Bases , 2001, Graphics Interface.

[14]  Sivan Toledo,et al.  High-Pass Quantization for Mesh Encoding , 2003, Symposium on Geometry Processing.

[15]  Rachida Amjoun,et al.  Higher order prediction for geometry compression , 2003, 2003 Shape Modeling International..

[16]  Martin Isenburg,et al.  Compressing polygon mesh geometry with parallelogram prediction , 2002, IEEE Visualization, 2002. VIS 2002..

[17]  Richard G. Baraniuk,et al.  Geometry Compression of Normal Meshes Using Rate-Distortion Algorithms , 2003, Symposium on Geometry Processing.

[18]  Teresa H. Y. Meng,et al.  Vertex Data Compression through Vector Quantization , 2002, IEEE Trans. Vis. Comput. Graph..

[19]  Ian H. Witten,et al.  Arithmetic coding for data compression , 1987, CACM.

[20]  Renato Pajarola,et al.  Compressed Progressive Meshes , 2000, IEEE Trans. Vis. Comput. Graph..

[21]  Hans-Peter Seidel,et al.  Geometry prediction for high degree polygons , 2005, SCCG '05.

[22]  Michael T. Orchard,et al.  Space-frequency quantization for wavelet image coding , 1997, IEEE Trans. Image Process..

[23]  William A. Pearlman,et al.  A new, fast, and efficient image codec based on set partitioning in hierarchical trees , 1996, IEEE Trans. Circuits Syst. Video Technol..

[24]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[25]  Craig Gotsman,et al.  Spectral compression of mesh geometry , 2000, EuroCG.

[26]  Jarek Rossignac,et al.  Edgebreaker: Connectivity Compression for Triangle Meshes , 1999, IEEE Trans. Vis. Comput. Graph..

[27]  Kenneth Rose,et al.  The asymptotic closed-loop approach to predictive vector quantizer design with application in video coding , 2001, IEEE Trans. Image Process..

[28]  Wolfgang Straßer,et al.  Tetrahedral mesh compression with the cut-border machine , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[29]  Gabriel Taubin,et al.  Progressive forest split compression , 1998, SIGGRAPH.

[30]  Peter Schröder,et al.  Normal meshes , 2000, SIGGRAPH.

[31]  Lihua Zhou,et al.  CONNECTIVITY COMPRESSION FOR TRIANGLE MESHES , 2003 .

[32]  C.-C. Jay Kuo,et al.  Technologies for 3D mesh compression: A survey , 2005, J. Vis. Commun. Image Represent..

[33]  Henri Maître,et al.  Lapped spectral decomposition for 3D triangle mesh compression , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[34]  Robert M. Gray,et al.  An Algorithm for Vector Quantizer Design , 1980, IEEE Trans. Commun..

[35]  T. Cover,et al.  Rate Distortion Theory , 2001 .

[36]  William A. Pearlman,et al.  Alphabet- and entropy-constrained vector quantization of image pyramids , 1991 .

[37]  Hyeong-Seok Ko,et al.  Vertex data compression for triangular meshes , 2000, Proceedings the Eighth Pacific Conference on Computer Graphics and Applications.

[38]  Marc Antonini,et al.  An efficient bit allocation for compressing normal meshes with an error-driven quantization , 2005, Comput. Aided Geom. Des..

[39]  Reinhard Klein,et al.  Mesh reduction with error control , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[40]  Pierre Alliez,et al.  Progressive compression for lossless transmission of triangle meshes , 2001, SIGGRAPH.

[41]  Wolfgang Straßer,et al.  Real time compression of triangle mesh connectivity , 1998, SIGGRAPH.

[42]  Michael Deering,et al.  Geometry compression , 1995, SIGGRAPH.

[43]  Craig Gotsman,et al.  Triangle Mesh Compression , 1998, Graphics Interface.

[44]  Martin Isenburg,et al.  Face fixer: compressing polygon meshes with properties , 2000, SIGGRAPH.