UNVEILING THE THREE-DIMENSIONAL STRUCTURE OF GALAXY CLUSTERS: RESOLVING THE DISCREPANCY BETWEEN X-RAY AND LENSING MASSES

We present the first determination of the intrinsic three-dimensional (3D) shapes and the physical parameters of both dark matter (DM) and intracluster medium (ICM) in a triaxial galaxy cluster. While most previous studies rely on the standard spherical modeling, our approach allows us to infer the properties of the non-spherical intracluster gas distribution sitting in hydrostatic equilibrium within triaxial DM halos by combining X-ray, weak-lensing, and strong-lensing observations. We present an application of our method to the galaxy cluster MACS J1423.8+2404. This source is an example of a well-relaxed object with a unimodal mass distribution, and we infer shape and physical properties of the ICM and the DM for this source. We found that this is a triaxial galaxy cluster with DM halo axial ratios 1.53 ± 0.15 and 1.44 ± 0.07 on the plane of the sky and along the line of sight, respectively. We show that accounting for the 3D geometry allows us to solve the long-standing discrepancy between galaxy cluster masses determined from X-ray and gravitational-lensing observations. We also focus on the determination of the inner slope of the DM density profile α, since the cuspiness of DM density profiles in the central regions is one of the critical tests of the cold dark matter (CDM) paradigm for structure formation: we measure α = 0.94 ± 0.09 by accounting explicitly for the 3D structure for this cluster, a value that is close to the CDM predictions, while the standard spherical modeling leads to the biased value α = 1.24 ± 0.07. Our study proves that it is not possible to disprove the manifestation of the DM with ∼0.25% of error in failing to reject the null hypothesis. Our findings provide further evidences that support the CDM scenario and open a new window in recovering the intrinsic shapes and desired physical parameters of galaxy clusters in a bias-free way. This has important consequences in using galaxy clusters as cosmological probes.

[1]  M. Bautz,et al.  DISCREPANT MASS ESTIMATES IN THE CLUSTER OF GALAXIES ABELL 1689 , 2009, 0906.4153.

[2]  K. Pedersen,et al.  RESOLVING THE DISCREPANCY BETWEEN LENSING AND X-RAY MASS ESTIMATES OF THE COMPLEX GALAXY CLUSTER ABELL 1689 , 2008, 0811.2793.

[3]  S. White,et al.  Are mergers responsible for universal halo properties , 2008, 0809.1322.

[4]  R. Blandford,et al.  What is the largest Einstein radius in the universe , 2008, 0808.0192.

[5]  D. Clowe,et al.  A new look at massive clusters: weak lensing constraints on the triaxial dark matter haloes of A1689, A1835 and A2204 , 2008, 0812.0632.

[6]  H. Ebeling,et al.  Probing the large-scale structure around the most distant galaxy clusters from the massive cluster survey , 2008, 0806.4019.

[7]  J. Kneib,et al.  Strong lensing in Abell 1703: constraints on the slope of the inner dark matter distribution , 2008, 0802.4292.

[8]  T. Schrabback,et al.  Dark Matter and Baryons in the X-Ray Luminous Merging Galaxy Cluster RX J1347.5–1145 , 2007, 0711.4850.

[9]  T. Broadhurst,et al.  Mass and gas profiles in A1689: joint X-ray and lensing analysis , 2007, 0711.3908.

[10]  J. Kneib,et al.  ApJ, accepted Preprint typeset using L ATEX style emulateapj v. 03/07/07 SEPARATING BARYONS AND DARK MATTER IN CLUSTER CORES: A FULL 2-D LENSING AND DYNAMIC ANALYSIS OF ABELL 383 AND MS2137-23 , 2022 .

[11]  A. Morandi,et al.  Entropy profiles in X-ray luminous galaxy clusters at z > 0.1 , 2007, 0706.2971.

[12]  IoA,et al.  Improved constraints on dark energy from Chandra X-ray observations of the largest relaxed galaxy clusters , 2007, 0706.0033.

[13]  L. Moscardini,et al.  X‐ray and Sunyaev–Zel'dovich scaling relations in galaxy clusters , 2007, 0704.2678.

[14]  J. Bullock,et al.  Probing the Dark Matter and Gas Fraction in Relaxed Galaxy Groups with X-Ray Observations from Chandra and XMM-Newton , 2006, astro-ph/0610134.

[15]  KIPACStanford,et al.  The dark matter haloes of massive, relaxed galaxy clusters observed with Chandra , 2006, astro-ph/0610038.

[16]  G. Bernstein,et al.  Evaluating dark energy probes using multidimensional dark energy parameters , 2006, astro-ph/0608269.

[17]  D. Clowe,et al.  A Direct Empirical Proof of the Existence of Dark Matter , 2006, astro-ph/0608407.

[18]  J. Bullock,et al.  The Absence of Adiabatic Contraction of the Radial Dark Matter Profile in the Galaxy Cluster A2589 , 2006, astro-ph/0602613.

[19]  B. Moore,et al.  Empirical Models for Dark Matter Halos. I. Nonparametric Construction of Density Profiles and Comparison with Parametric Models , 2005, astro-ph/0509417.

[20]  A. Biviano,et al.  The radial profiles of the different mass components in galaxy clusters , 2005, astro-ph/0511309.

[21]  Walter Dehnen,et al.  Dynamical insight into dark matter haloes , 2005, astro-ph/0506528.

[22]  T. Broadhurst,et al.  Can the Steep Mass Profile of A1689 Be Explained by a Triaxial Dark Halo? , 2005, astro-ph/0505452.

[23]  R. Gavazzi Projection effects in cluster mass estimates: the case of MS2137-23 , 2005, astro-ph/0503696.

[24]  Italy,et al.  Measuring the Three-dimensional Structure of Galaxy Clusters. I. Application to a Sample of 25 Clusters , 2005, astro-ph/0502153.

[25]  S. Tremaine,et al.  Galactic Dynamics , 2005 .

[26]  M. Markevitch,et al.  Chandra Temperature Profiles for a Sample of Nearby Relaxed Galaxy Clusters , 2004, astro-ph/0412306.

[27]  D. Nagai,et al.  Response of Dark Matter Halos to Condensation of Baryons: Cosmological Simulations and Improved Adiabatic Contraction Model , 2004, astro-ph/0406247.

[28]  L. Moscardini,et al.  Comparing the temperatures of galaxy clusters from hydrodynamical N-body simulations to Chandra and XMM-Newton observations , 2004, astro-ph/0404425.

[29]  M. Kamionkowski,et al.  Dynamical-friction galaxy-gas coupling and cluster cooling flows , 2004, astro-ph/0403696.

[30]  J. Stadel,et al.  Convergence and scatter of cluster density profiles , 2004, astro-ph/0402267.

[31]  G. Madejski,et al.  Complex Structure of Galaxy Cluster A1689: Evidence for a Merger from X-Ray Data? , 2004, astro-ph/0401604.

[32]  Y. Suto,et al.  Reconstructing the Three-dimensional Structure of Underlying Triaxial Dark Halos from X-Ray and Sunyaev-Zel’dovich Effect Observations of Galaxy Clusters , 2003, astro-ph/0306217.

[33]  A. Vikhlinin,et al.  Constraining Amplitude and Slope of the Mass Fluctuation Spectrum Using a Cluster Baryon Mass Function , 2003, astro-ph/0305549.

[34]  U. Washington,et al.  The inner structure of ΛCDM haloes – III. Universality and asymptotic slopes , 2003, astro-ph/0311231.

[35]  T. Treu,et al.  The Dark Matter Distribution in the Central Regions of Galaxy Clusters: Implications for Cold Dark Matter , 2003, astro-ph/0309465.

[36]  Y. Mellier,et al.  A radial mass profile analysis of the lensing cluster MS 2137.3–2353 , 2002, astro-ph/0212214.

[37]  J. Suto Modeling Intra-Cluster Gas in Triaxial Dark Halos , 2002, astro-ph/0211007.

[38]  J. Stocke,et al.  Chandra Observations of A2029: The Dark Matter Profile Down to below 0.01rvir in an Unusually Relaxed Cluster , 2002, astro-ph/0209205.

[39]  T. Treu,et al.  The Dark Matter Density Profile of the Lensing Cluster MS 2137–23: A Test of the Cold Dark Matter Paradigm , 2002, astro-ph/0207048.

[40]  H. Dahle,et al.  The Density Profile of Cluster-Scale Dark Matter Halos , 2002, astro-ph/0206455.

[41]  D. Kelson,et al.  Determination of the Dark Matter Profile of A2199 from Integrated Starlight , 2002, astro-ph/0205316.

[42]  Y. Jing,et al.  Triaxial Modeling of Halo Density Profiles with High-Resolution N-Body Simulations , 2002, astro-ph/0202064.

[43]  S. Allen,et al.  Deep inside the core of Abell 1795: the Chandra view , 2001, astro-ph/0111586.

[44]  M. Bautz,et al.  Chandra Observations of the Lensing Cluster EMSS 1358+6245: Implications for Self-interacting Dark Matter , 2001, astro-ph/0109141.

[45]  J. Navarro,et al.  The Phase-Space Density Profiles of Cold Dark Matter Halos , 2001, astro-ph/0104002.

[46]  A. Edge,et al.  MACS: A Quest for the Most Massive Galaxy Clusters in the Universe , 2000, astro-ph/0009101.

[47]  J. Kneib,et al.  A Hubble Space Telescope Lensing Survey of X-Ray Luminous Galaxy Clusters. I. A383 , 2000, astro-ph/0008315.

[48]  S. White,et al.  Weakly Self-interacting Dark Matter and the Structure of Dark Halos , 2000, astro-ph/0006134.

[49]  H. M. P. Couchman,et al.  The mass function of dark matter haloes , 2000, astro-ph/0005260.

[50]  G. Lake,et al.  Cold collapse and the core catastrophe , 1999, astro-ph/9903164.

[51]  Jounghun Lee,et al.  Comparison of Analytical Mass Functions with Numerical Simulations , 1998, astro-ph/9811004.

[52]  Y. Suto,et al.  Gas Density and X-Ray Surface Brightness Profiles of Clusters of Galaxies from Dark Matter Halo Potentials: Beyond the Isothermal β-Model , 1998, astro-ph/9807112.

[53]  N. Grevesse,et al.  Standard Solar Composition , 1998 .

[54]  Y. Suto,et al.  X-Ray Gas Density Profile of Clusters of Galaxies from the Universal Dark Matter Halo , 1997, astro-ph/9710344.

[55]  G. Lake,et al.  Resolving the Structure of Cold Dark Matter Halos , 1997, astro-ph/9709051.

[56]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[57]  K. Arnaud XSPEC: The First Ten Years , 1996 .

[58]  C. Canizares,et al.  X-ray Constraints on the Intrinsic Shapes and Baryon Fractions of Five Abell Clusters , 1995, astro-ph/9504049.

[59]  Duane A. Liedahl,et al.  New Calculations of Fe L-Shell X-Ray Spectra in High-Temperature Plasmas , 1995 .

[60]  A. Babul,et al.  Gravitational Lensing in Clusters of Galaxies: New Clues Regarding the Dynamics of Intracluster Gas , 1994, astro-ph/9405063.

[61]  C. Canizares,et al.  Geometrical evidence for dark matter: X-ray constraints on the mass of the elliptical galaxy NGC 720 , 1993, astro-ph/9311073.

[62]  John Dubinski,et al.  The structure of cold dark matter halos , 1991 .

[63]  J. Dickey,et al.  H I in the Galaxy , 1990 .

[64]  C. Sarazin Book Review: X-ray emission from clusters of galaxies / CUP, 1988 , 1988 .