Design Rationale for Posterior Dynamic Stabilization Relevant for Spine Surgery

[1]  Bing Wang,et al.  [Mid-term follow-up efficacy of interspinous dynamic stabilization system for lumbar degenerative diseases]. , 2019, Zhongguo gu shang = China journal of orthopaedics and traumatology.

[2]  S. Schmidt,et al.  Prospective, randomized, multicenter study with 2-year follow-up to compare the performance of decompression with and without interlaminar stabilization. , 2018, Journal of neurosurgery. Spine.

[3]  W. Skalli,et al.  Limiting interpedicular screw displacement increases shear forces in screws: A finite element study. , 2017, Orthopaedics & traumatology, surgery & research : OTSR.

[4]  Tomaso Villa,et al.  Toward the definition of a new worst-case paradigm for the preclinical evaluation of posterior spine stabilization devices , 2017, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[5]  C. Pfirrmann,et al.  Herniectomy versus herniectomy with the DIAM spinal stabilization system in patients with sciatica and concomitant low back pain: results of a prospective randomized controlled multicenter trial , 2017, European Spine Journal.

[6]  E. Benzel,et al.  Decompression surgery for spinal metastases: a systematic review. , 2016, Neurosurgical focus.

[7]  Luigi Solbiati,et al.  Identification of residual tumor with intraoperative contrast-enhanced ultrasound during glioblastoma resection. , 2016, Neurosurgical focus.

[8]  T. Sun,et al.  Comparison of the Dynesys Dynamic Stabilization System and Posterior Lumbar Interbody Fusion for Lumbar Degenerative Disease , 2016, PloS one.

[9]  C. Ames,et al.  Introduction. Dynamic stabilization of the spine. , 2016, Neurosurgical focus.

[10]  Jeffrey C. Wang,et al.  Complications associated with the Dynesys dynamic stabilization system: a comprehensive review of the literature. , 2016, Neurosurgical focus.

[11]  S. Yerby,et al.  Sacroiliac Joint Fusion Minimally Affects Adjacent Lumbar Segment Motion: A Finite Element Study , 2015, International Journal of Spine Surgery.

[12]  A. Cristante,et al.  Late failure of posterior fixation without bone fusion for vertebral metastases , 2015, Acta ortopedica brasileira.

[13]  S. Stein,et al.  Tracking patient-reported outcomes in spinal disorders , 2015, Surgical neurology international.

[14]  S. Carbone,et al.  The results of a consecutive series of dynamic posterior stabilizations using the PercuDyn device , 2015, European Spine Journal.

[15]  K. Baker,et al.  Lumbar pseudarthrosis: a review of current diagnosis and treatment. , 2015, Neurosurgical focus.

[16]  T. Villa,et al.  Comparative analysis of international standards for the fatigue testing of posterior spinal fixation systems: the importance of preload in ISO 12189. , 2015, The spine journal : official journal of the North American Spine Society.

[17]  D. Cook,et al.  In Vitro Comparison of Dynesys, PEEK, and Titanium Constructs in the Lumbar Spine , 2015, Advances in orthopedics.

[18]  D. DiAngelo,et al.  Biomechanical Comparison of Robotically Applied Pure Moment, Ideal Follower Load, and Novel Trunk Weight Loading Protocols on L4-L5 Cadaveric Segments during Flexion-Extension , 2015, International Journal of Spine Surgery.

[19]  Chip Wade,et al.  Motion Analysis System Measurement Performance of a Computer Assisted Vertebral , 2018 .

[20]  D. Ohnmeiss,et al.  Development of a novel radiographic measure of lumbar instability and validation using the facet fluid sign , 2015, International Journal of Spine Surgery.

[21]  Safdar N. Khan,et al.  Adjacent segment disease. , 2014, Orthopedics.

[22]  P. Parchi,et al.  Biomechanics of Interspinous Devices , 2014, BioMed research international.

[23]  M. Marrelli,et al.  A new device used in the restoration of kinematics after total facet arthroplasty , 2014, Medical devices.

[24]  A. Diwan,et al.  Letter to the Editor regarding the article " Interpedicular Travel in the Evaluation of Spinal Implants: An application in Posterior Dynamic Stabilization" by D.J. Cook, M.S. Yeager, and B.C. Cheng: Spine 2012; 37(11): 923-931. , 2014 .

[25]  E. Benzel,et al.  Adjacent segment disease perspective and review of the literature. , 2014, The Ochsner journal.

[26]  Jonathan N Grauer,et al.  Methods of evaluating lumbar and cervical fusion. , 2014, The spine journal : official journal of the North American Spine Society.

[27]  C. Doria,et al.  Dynamic Stabilization of the Lumbar Spine: Current Status of Minimally Invasive and Open Treatments , 2014 .

[28]  H. Kim,et al.  The Effect of Zoledronic Acid on the Volume of the Fusion-Mass in Lumbar Spinal Fusion , 2013, Clinics in orthopedic surgery.

[29]  H. Yoshihara Rods in spinal surgery: a review of the literature. , 2013, The spine journal : official journal of the North American Spine Society.

[30]  T. Hara,et al.  Biomechanical evaluation of destabilization following minimally invasive decompression for lumbar spinal canal stenosis. , 2013, Journal of neurosurgery. Spine.

[31]  V. Goel,et al.  Biomechanics of Posterior Dynamic Stabilization Systems , 2013, Advances in orthopedics.

[32]  D. Qian,et al.  Design of Dynamic and Fatigue‐Strength‐Enhanced Orthopedic Implants , 2013 .

[33]  Q. Fu,et al.  Two-year follow-up results of the Isobar TTL Semi-Rigid Rod System for the treatment of lumbar degenerative disease , 2013, Journal of Clinical Neuroscience.

[34]  A. Ozer,et al.  A Short History of Posterior Dynamic Stabilization , 2012, Advances in orthopedics.

[35]  D. Sengupta,et al.  Pedicle Screw-Based Posterior Dynamic Stabilization: Literature Review , 2012, Advances in orthopedics.

[36]  A. Rohlmann,et al.  Which Radiographic Parameters Are Linked to Failure of a Dynamic Spinal Implant? , 2012, Clinical orthopaedics and related research.

[37]  Tae-Ahn Jahng,et al.  NFlex Dynamic Stabilization System : Two-Year Clinical Outcomes of Multi-Center Study , 2012, Journal of Korean Neurosurgical Society.

[38]  Daniel J. Cook,et al.  Interpedicular Travel in the Evaluation of Spinal Implants: An Application in Posterior Dynamic Stabilization , 2012, Spine.

[39]  R. Delamarter,et al.  Spinal Fusion in the United States: Analysis of Trends From 1998 to 2008 , 2012, Spine.

[40]  Z. Smith,et al.  A minimally invasive technique for percutaneous lumbar facet augmentation: Technical description of a novel device , 2011, Surgical neurology international.

[41]  H. Serhan,et al.  Motion-preserving technologies for degenerative lumbar spine: The past, present, and future horizons , 2011, International Journal of Spine Surgery.

[42]  J. Steib,et al.  Influence of 2 Different Dynamic Stabilization Systems on Sagittal Spinopelvic Alignment , 2011, Journal of spinal disorders & techniques.

[43]  J. Buric,et al.  Long-term reduction in pain and disability after surgery with the interspinous device for intervertebral assisted motion (DIAM) spinal stabilization system in patients with low back pain: 4-year follow-up from a longitudinal prospective case series , 2011, European Spine Journal.

[44]  A. Ozer,et al.  Clinical outcomes of degenerative lumbar spinal stenosis treated with lumbar decompression and the Cosmic “semi-rigid” posterior system , 2010, SAS Journal.

[45]  F. Schwab,et al.  Bone grafting options for lumbar spine surgery: a review examining clinical efficacy and complications , 2010, SAS Journal.

[46]  A. Alpízar-Aguirre,et al.  Posterior dynamic stabilization of the lumbar spine with the Accuflex rod system as a stand-alone device: experience in 20 patients with 2-year follow-up , 2010, European Spine Journal.

[47]  Ali Fahir Ozer,et al.  Comparison of posterior dynamic and posterior rigid transpedicular stabilization with fusion to treat degenerative spondylolisthesis. , 2010, Orthopedics.

[48]  H. Reichel,et al.  Screw loosening after posterior dynamic stabilization--review of the literature. , 2010, Acta chirurgiae orthopaedicae et traumatologiae Cechoslovaca.

[49]  Dongsheng Zhang,et al.  The effects of a new shape-memory alloy interspinous process device on the distribution of intervertebral disc pressures in vitro☆ , 2010, Journal of biomedical research.

[50]  C. Stüer,et al.  Pedicle screw-based dynamic stabilization of the thoracolumbar spine with the Cosmic®-system: a prospective observation , 2010, Acta Neurochirurgica.

[51]  William C Welch,et al.  Osteoinductive bone graft substitutes for lumbar fusion: a systematic review. , 2009, Journal of neurosurgery. Spine.

[52]  Bo Young Cho,et al.  The BioFlex System as a Dynamic Stabilization Device : Does It Preserve Lumbar Motion? , 2009, Journal of Korean Neurosurgical Society.

[53]  Kisook Kim,et al.  Adjacent Segment Instability after Treatment with a Graf Ligament at Minimum 8 Years’ Followup , 2009, Clinical orthopaedics and related research.

[54]  Hendrik Schmidt,et al.  Which axial and bending stiffnesses of posterior implants are required to design a flexible lumbar stabilization system? , 2009, Journal of biomechanics.

[55]  Alexander R. Vaccaro,et al.  Biomechanical Evaluation of Pedicle Screw-Based Dynamic Stabilization Devices for the Lumbar Spine: A Systematic Review , 2008, SAS Journal.

[56]  Wafa Skalli,et al.  New Interspinous Implant Evaluation Using an In Vitro Biomechanical Study Combined With a Finite-Element Analysis , 2007, Spine.

[57]  Paul S Saphier,et al.  Stress-shielding compared with load-sharing anterior cervical plate fixation: a clinical and radiographic prospective analysis of 50 patients. , 2007, Journal of neurosurgery. Spine.

[58]  M. Panjabi,et al.  Development of Stabilimax NZ From Biomechanical Principles , 2007, SAS Journal.

[59]  K.,et al.  Classification of posterior dynamic stabilization devices. , 2007, Neurosurgical focus.

[60]  Kyung-Woo Park,et al.  Nitinol spring rod dynamic stabilization system and Nitinol memory loops in surgical treatment for lumbar disc disorders: short-term follow up. , 2007, Neurosurgical focus.

[61]  Vijay K. Goel,et al.  Biomechanical Rationale for Using Polyetheretherketone (PEEK) Spacers for Lumbar Interbody Fusion–A Finite Element Study , 2006, Spine.

[62]  Avinash G Patwardhan,et al.  Biomechanics of posterior dynamic stabilizing device (DIAM) after facetectomy and discectomy. , 2006, The spine journal : official journal of the North American Spine Society.

[63]  P. Anderson,et al.  Treatment of neurogenic claudication by interspinous decompression: application of the X STOP device in patients with lumbar degenerative spondylolisthesis. , 2006, Journal of neurosurgery. Spine.

[64]  W. Hutton,et al.  A biomechanical evaluation of an interspinous device (Coflex) used to stabilize the lumbar spine. , 2006, Journal of surgical orthopaedic advances.

[65]  Manohar M Panjabi,et al.  Effects of Charité Artificial Disc on the Implanted and Adjacent Spinal Segments Mechanics Using a Hybrid Testing Protocol , 2005, Spine.

[66]  O. Schwarzenbach,et al.  Posterior dynamic stabilization systems: DYNESYS. , 2005, The Orthopedic clinics of North America.

[67]  J. Zucherman,et al.  A Multicenter, Prospective, Randomized Trial Evaluating the X STOP Interspinous Process Decompression System for the Treatment of Neurogenic Intermittent Claudication: Two-Year Follow-Up Results , 2005, Spine.

[68]  Astrid Junge,et al.  Clinical Experience With the Dynesys Semirigid Fixation System for the Lumbar Spine: Surgical and Patient-Oriented Outcome in 50 Cases After an Average of 2 Years , 2005, Spine.

[69]  S. Yerby,et al.  The Effects of an Interspinous Implant on the Kinematics of the Instrumented and Adjacent Levels in the Lumbar Spine , 2003, Spine.

[70]  E. Benzel,et al.  The biomechanics of iatrogenic spinal destabilization and implant failure. , 2003, Neurosurgical focus.

[71]  K. Pande,et al.  Graf ligamentoplasty: a 7-year follow-up , 2002, European Spine Journal.

[72]  D. Sengupta,et al.  Rationale, principles and experimental evaluation of the concept of soft stabilization , 2002, European Spine Journal.

[73]  J. Sénégas,et al.  Mechanical supplementation by non-rigid fixation in degenerative intervertebral lumbar segments: the Wallis system , 2002, European Spine Journal.

[74]  E. Benzel,et al.  Biomechanics of bone fusion. , 2001, Neurosurgical focus.

[75]  V K Goel,et al.  Pathomechanisms of Failures of the Odontoid , 2000, Spine.

[76]  K. Kaneda,et al.  In vitro biomechanical investigation of the stability and stress-shielding effect of lumbar interbody fusion devices. , 2000, Journal of neurosurgery.

[77]  J. Schofferman,et al.  Patient satisfaction after circumferential lumbar fusion. , 2000, Spine.

[78]  A. Patwardhan,et al.  A follower load increases the load-carrying capacity of the lumbar spine in compression. , 1999, Spine.

[79]  K Kaneda,et al.  Stability of Posterior Spinal Instrumentation and Its Effects on Adjacent Motion Segments in the Lumbosacral Spine , 1998, Spine.

[80]  A. Vaccaro,et al.  Pseudarthrosis after postoperative wound infection in the lumbar spine. , 1997, Journal of spinal disorders.

[81]  E Y Chao,et al.  Effects of axial dynamization on bone healing. , 1993, The Journal of trauma.

[82]  R. Deyo,et al.  Surgery for Lumbar Spinal Stenosis: Attempted Meta‐Analysis of the Literature , 1992, Spine.

[83]  N. Langrana,et al.  Lumbosacral spinal fusion. A biomechanical study. , 1984, Spine.

[84]  H. Farfan,et al.  Instability of the lumbar spine. , 1982, Clinical orthopaedics and related research.