Mutual information-based feature selection for low-cost BCIs based on motor imagery

In the present study a feature selection algorithm based on mutual information (MI) was applied to electro-encephalographic (EEG) data acquired during three different motor imagery tasks from two dataset: Dataset I from BCI Competition IV including full scalp recordings from four subjects, and new data recorded from three subjects using the popular low-cost Emotiv EPOC EEG headset. The aim was to evaluate optimal channels and band-power (BP) features for motor imagery tasks discrimination, in order to assess the feasibility of a portable low-cost motor imagery based Brain-Computer Interface (BCI) system. The minimal sub set of features most relevant to task description and less redundant to each other was determined, and the corresponding classification accuracy was assessed offline employing linear support vector machine (SVM) in a 10-fold cross validation scheme. The analysis was performed: (a) on the original full Dataset I from BCI competition IV, (b) on a restricted channels set from Dataset I corresponding to available Emotiv EPOC electrodes locations, and (c) on data recorded with the EPOC system. Results from (a) showed that an offline classification accuracy above 80% can be reached using only 5 features. Limiting the analysis to EPOC channels caused a decrease of classification accuracy, although it still remained above chance level, both for data from (b) and (c). A top accuracy of 70% was achieved using 2 optimal features. These results encourage further research towards the development of portable low cost motor imagery-based BCI systems.

[1]  Klaus-Robert Müller,et al.  The non-invasive Berlin Brain–Computer Interface: Fast acquisition of effective performance in untrained subjects , 2007, NeuroImage.

[2]  S. Bonnet,et al.  Channel selection procedure using riemannian distance for BCI applications , 2011, 2011 5th International IEEE/EMBS Conference on Neural Engineering.

[3]  German Castellanos-Dominguez,et al.  Motor imagery classification using feature relevance analysis: An Emotiv-based BCI system , 2014, 2014 XIX Symposium on Image, Signal Processing and Artificial Vision.

[4]  Thierry Dutoit,et al.  Performance of the Emotiv Epoc headset for P300-based applications , 2013, Biomedical engineering online.

[5]  J. Manuel Cano Izquierdo,et al.  Are low cost Brain Computer Interface headsets ready for motor imagery applications? , 2016, Expert Syst. Appl..

[6]  K. Kim,et al.  Accurate motor imagery based dry electrode brain-computer interface system for consumer applications , 2012, 2012 IEEE 16th International Symposium on Consumer Electronics.

[7]  G. Pfurtscheller,et al.  Brain-Computer Interfaces for Communication and Control. , 2011, Communications of the ACM.

[8]  Dimitris Kugiumtzis,et al.  Nearest neighbor estimate of conditional mutual information in feature selection , 2012, Expert Syst. Appl..

[9]  Klaus-Robert Müller,et al.  Classifying Single Trial EEG: Towards Brain Computer Interfacing , 2001, NIPS.

[10]  G. Pfurtscheller,et al.  ERD/ERS patterns reflecting sensorimotor activation and deactivation. , 2006, Progress in brain research.