Validation and Storage of Polyhedra through Constrained Delaunay Tetrahedralization

Closed, watertight, 3D geometries are represented by polyhedra. Current data models define these polyhedra basically as a set of polygons, leaving the test on intersecting polygons or open gaps to external validation rules. If this testing is not performed well, or not at all, non-valid polyhedra could be stored in geo-databases. This paper proposes the utilization of the Constrained Delaunay Tetrahedralization (CDT) for the validation (i.e. check on self-intersecting and closeness) of polyhedra on the one hand, and the efficient storage of valid polyhedra on the other hand. The paper stresses on the decomposition of a polyhedron through a CDT and the possibility to store and compose the polyhedron through the vertices of the CDT, a bitmap that indicates which faces of the Delaunay Tetrahedralization (DT) links to a CDT-face, and a list of non-recovered CDT-faces.

[1]  Herbert Edelsbrunner,et al.  Geometry and Topology for Mesh Generation , 2001, Cambridge monographs on applied and computational mathematics.

[2]  Peter van Oosterom,et al.  A simplicial complex‐based DBMS approach to 3D topographic data modelling , 2008, Int. J. Geogr. Inf. Sci..

[3]  G. Ziegler Lectures on Polytopes , 1994 .

[4]  Anwei Liu,et al.  How far flipping can go towards 3D conforming/constrained triangulation , 2000, IMR.

[5]  Tomas Akenine-Möller,et al.  A Fast Triangle-Triangle Intersection Test , 1997, J. Graphics, GPU, & Game Tools.

[6]  Monika Sester,et al.  Multiple representation and interoperability of spatial data , 2006 .

[7]  Olivier Devillers,et al.  Fast and Robust Triangle-Triangle Overlap Test Using Orientation Predicates , 2003, J. Graphics, GPU, & Game Tools.

[8]  E. Schönhardt,et al.  Über die Zerlegung von Dreieckspolyedern in Tetraeder , 1928 .

[9]  P. George,et al.  ‘Ultimate’ robustness in meshing an arbitrary polyhedron , 2003 .

[10]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[11]  Marshall W. Bern,et al.  Compatible tetrahedralizations , 1993, SCG '93.

[12]  Herbert Edelsbrunner,et al.  Geometry and Topology for Mesh Generation , 2001, Cambridge monographs on applied and computational mathematics.

[13]  Jonathan Richard Shewchuk,et al.  General-Dimensional Constrained Delaunay and Constrained Regular Triangulations, I: Combinatorial Properties , 2008, Discret. Comput. Geom..

[14]  Bernard Chazelle,et al.  Convex Partitions of Polyhedra: A Lower Bound and Worst-Case Optimal Algorithm , 1984, SIAM J. Comput..

[15]  David M. Mount,et al.  A point-placement strategy for conforming Delaunay tetrahedralization , 2000, SODA '00.

[16]  Siva Ravada,et al.  On Valid and Invalid Three-Dimensional Geometries , 2008 .

[17]  Tiow Seng Tan,et al.  An upper bound for conforming Delaunay triangulations , 1992, SCG '92.

[18]  Christopher Dyken,et al.  Preferred directions for resolving the non-uniqueness of Delaunay triangulations , 2006, Comput. Geom..

[19]  Bernard Chazelle,et al.  Triangulating a nonconvex polytope , 1990, Discret. Comput. Geom..

[20]  Raimund Seidel,et al.  On the difficulty of triangulating three-dimensional Nonconvex Polyhedra , 1992, Discret. Comput. Geom..

[21]  Tiow Seng Tan,et al.  A Quadratic Time Algorithm for the Minimax Length Triangulation , 1993, SIAM J. Comput..

[22]  Pierre Alliez,et al.  Computational geometry algorithms library , 2008, SIGGRAPH '08.

[23]  Mariette Yvinec,et al.  Conforming Delaunay triangulations in 3D , 2002, SCG '02.

[24]  Sheung-Hung Poon,et al.  Graded conforming Delaunay tetrahedralization with bounded radius-edge ratio , 2003, SODA '03.

[25]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[26]  Mark S. Shephard,et al.  Triangulation of arbitrary polyhedra to support automatic mesh generators , 2000 .

[27]  Edward Verbree ENCODING AND DECODING OF PLANAR MAPS THROUGH CONFORMING DELAUNAY TRIANGULATIONS , 2006 .

[28]  Klaus Gärtner,et al.  Meshing Piecewise Linear Complexes by Constrained Delaunay Tetrahedralizations , 2005, IMR.

[29]  Bernard Chazelle,et al.  Triangulating a non-convex polytype , 1989, SCG '89.

[30]  Christoph M. Hoffmann,et al.  Geometric and Solid Modeling: An Introduction , 1989 .

[31]  Peter van Oosterom,et al.  About Invalid, Valid and Clean Polygons , 2004, SDH.

[32]  Friso Penninga,et al.  Editing Features in a TEN- based DBMS approach for 3D Topographic Data Modelling , 2006 .

[33]  Jantien E. Stoter,et al.  Modelling 3D spatial objects in a geo-DBMS using a 3D primitive , 2003, Computational Geosciences.