Validation and Storage of Polyhedra through Constrained Delaunay Tetrahedralization
暂无分享,去创建一个
Edward Verbree | Hang Si | H. Si | E. Verbree
[1] Herbert Edelsbrunner,et al. Geometry and Topology for Mesh Generation , 2001, Cambridge monographs on applied and computational mathematics.
[2] Peter van Oosterom,et al. A simplicial complex‐based DBMS approach to 3D topographic data modelling , 2008, Int. J. Geogr. Inf. Sci..
[3] G. Ziegler. Lectures on Polytopes , 1994 .
[4] Anwei Liu,et al. How far flipping can go towards 3D conforming/constrained triangulation , 2000, IMR.
[5] Tomas Akenine-Möller,et al. A Fast Triangle-Triangle Intersection Test , 1997, J. Graphics, GPU, & Game Tools.
[6] Monika Sester,et al. Multiple representation and interoperability of spatial data , 2006 .
[7] Olivier Devillers,et al. Fast and Robust Triangle-Triangle Overlap Test Using Orientation Predicates , 2003, J. Graphics, GPU, & Game Tools.
[8] E. Schönhardt,et al. Über die Zerlegung von Dreieckspolyedern in Tetraeder , 1928 .
[9] P. George,et al. ‘Ultimate’ robustness in meshing an arbitrary polyhedron , 2003 .
[10] Franz Aurenhammer,et al. Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.
[11] Marshall W. Bern,et al. Compatible tetrahedralizations , 1993, SCG '93.
[12] Herbert Edelsbrunner,et al. Geometry and Topology for Mesh Generation , 2001, Cambridge monographs on applied and computational mathematics.
[13] Jonathan Richard Shewchuk,et al. General-Dimensional Constrained Delaunay and Constrained Regular Triangulations, I: Combinatorial Properties , 2008, Discret. Comput. Geom..
[14] Bernard Chazelle,et al. Convex Partitions of Polyhedra: A Lower Bound and Worst-Case Optimal Algorithm , 1984, SIAM J. Comput..
[15] David M. Mount,et al. A point-placement strategy for conforming Delaunay tetrahedralization , 2000, SODA '00.
[16] Siva Ravada,et al. On Valid and Invalid Three-Dimensional Geometries , 2008 .
[17] Tiow Seng Tan,et al. An upper bound for conforming Delaunay triangulations , 1992, SCG '92.
[18] Christopher Dyken,et al. Preferred directions for resolving the non-uniqueness of Delaunay triangulations , 2006, Comput. Geom..
[19] Bernard Chazelle,et al. Triangulating a nonconvex polytope , 1990, Discret. Comput. Geom..
[20] Raimund Seidel,et al. On the difficulty of triangulating three-dimensional Nonconvex Polyhedra , 1992, Discret. Comput. Geom..
[21] Tiow Seng Tan,et al. A Quadratic Time Algorithm for the Minimax Length Triangulation , 1993, SIAM J. Comput..
[22] Pierre Alliez,et al. Computational geometry algorithms library , 2008, SIGGRAPH '08.
[23] Mariette Yvinec,et al. Conforming Delaunay triangulations in 3D , 2002, SCG '02.
[24] Sheung-Hung Poon,et al. Graded conforming Delaunay tetrahedralization with bounded radius-edge ratio , 2003, SODA '03.
[25] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[26] Mark S. Shephard,et al. Triangulation of arbitrary polyhedra to support automatic mesh generators , 2000 .
[27] Edward Verbree. ENCODING AND DECODING OF PLANAR MAPS THROUGH CONFORMING DELAUNAY TRIANGULATIONS , 2006 .
[28] Klaus Gärtner,et al. Meshing Piecewise Linear Complexes by Constrained Delaunay Tetrahedralizations , 2005, IMR.
[29] Bernard Chazelle,et al. Triangulating a non-convex polytype , 1989, SCG '89.
[30] Christoph M. Hoffmann,et al. Geometric and Solid Modeling: An Introduction , 1989 .
[31] Peter van Oosterom,et al. About Invalid, Valid and Clean Polygons , 2004, SDH.
[32] Friso Penninga,et al. Editing Features in a TEN- based DBMS approach for 3D Topographic Data Modelling , 2006 .
[33] Jantien E. Stoter,et al. Modelling 3D spatial objects in a geo-DBMS using a 3D primitive , 2003, Computational Geosciences.