Nutritional ecology of arbuscular mycorrhizal fungi

[1]  G. Amodeo,et al.  Expression analysis of the first arbuscular mycorrhizal fungi aquaporin described reveals concerted gene expression between salt-stressed and nonstressed mycelium. , 2009, Molecular plant-microbe interactions : MPMI.

[2]  A. Fitter,et al.  Natural selection and the evolutionary ecology of the arbuscular mycorrhizal fungi (Phylum Glomeromycota). , 2009, Journal of experimental botany.

[3]  Matthew Hannah,et al.  Genome-wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus. , 2009, The New phytologist.

[4]  E. Grace,et al.  More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. , 2009, The New phytologist.

[5]  C. Hamel,et al.  The arbuscular mycorrhizal symbiosis links N mineralization to plant demand , 2009, Mycorrhiza.

[6]  Marek Dynowski,et al.  A Mycorrhizal-Specific Ammonium Transporter from Lotus japonicus Acquires Nitrogen Released by Arbuscular Mycorrhizal Fungi1 , 2009, Plant Physiology.

[7]  E. Blancaflor,et al.  Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis , 2009, BMC Plant Biology.

[8]  D. Croll,et al.  Recombination in Glomus intraradices, a supposed ancient asexual arbuscular mycorrhizal fungus , 2009, BMC Evolutionary Biology.

[9]  T. Kuyper,et al.  Ectomycorrhizal fungi associated with Pinus sylvestris seedlings respond differently to increased carbon and nitrogen availability: implications for ecosystem responses to global change , 2009 .

[10]  P. Lammers,et al.  The long hard road to a completed Glomus intraradices genome. , 2008, The New phytologist.

[11]  P. Marschner,et al.  Is cortical root colonization required for carbon transfer to arbuscular mycorrhizal fungi? Evidence from colonization phenotypes and spore production in the reduced mycorrhizal colonization (rmc) mutant of tomato , 2008 .

[12]  S. Declerck,et al.  Absence of carbon transfer between Medicago truncatula plants linked by a mycorrhizal network, demonstrated in an experimental microcosm. , 2008, FEMS microbiology ecology.

[13]  P. Lammers,et al.  Genetic diversity and host plant preferences revealed by simple sequence repeat and mitochondrial markers in a population of the arbuscular mycorrhizal fungus Glomus intraradices. , 2008, The New phytologist.

[14]  B. Lindahl,et al.  Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. , 2007, FEMS microbiology ecology.

[15]  A. Fitter,et al.  Specificity and resilience in the arbuscular mycorrhizal fungi of a natural woodland community , 2007 .

[16]  M. J. Harrison,et al.  A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis , 2007, Proceedings of the National Academy of Sciences.

[17]  A. Schüßler,et al.  Characterization of a carbohydrate transporter from symbiotic glomeromycotan fungi , 2006, Nature.

[18]  Per Ambus,et al.  Enzymatic Evidence for the Key Role of Arginine in Nitrogen Translocation by Arbuscular Mycorrhizal Fungi1[OA] , 2006, Plant Physiology.

[19]  L. Lanfranco,et al.  A limiting source of organic nitrogen induces specific transcriptional responses in the extraradical structures of the endomycorrhizal fungus Glomus intraradices , 2006, Current Genetics.

[20]  A. Fitter What is the link between carbon and phosphorus fluxes in arbuscular mycorrhizas? A null hypothesis for symbiotic function. , 2006, The New phytologist.

[21]  K. Akiyama,et al.  Strigolactones: chemical signals for fungal symbionts and parasitic weeds in plant roots. , 2006, Annals of botany.

[22]  M. González-Guerrero,et al.  GintAMT1 encodes a functional high-affinity ammonium transporter that is expressed in the extraradical mycelium of Glomus intraradices. , 2006, Fungal genetics and biology : FG & B.

[23]  P. Lammers,et al.  The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. , 2005, The New phytologist.

[24]  A. Bago,et al.  Competition and substrate colonization strategies of three polyxenically grown arbuscular mycorrhizal fungi. , 2005 .

[25]  K. Yano,et al.  Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied , 2005 .

[26]  T. Kuyper,et al.  Taking mycocentrism seriously: mycorrhizal fungal and plant responses to elevated CO2. , 2005, The New phytologist.

[27]  M. Saito,et al.  Polyphosphate dynamics in mycorrhizal roots during colonization of an arbuscular mycorrhizal fungus. , 2005, The New phytologist.

[28]  W. Horwath,et al.  Application of network theory to potential mycorrhizal networks , 2005, Mycorrhiza.

[29]  Peter J. Lammers,et al.  Nitrogen transfer in the arbuscular mycorrhizal symbiosis , 2005, Nature.

[30]  T. Cavagnaro,et al.  Functional diversity in arbuscular mycorrhizas: exploitation of soil patches with different phosphate enrichment differs among fungal species , 2005 .

[31]  D. Eide,et al.  Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family. , 2005, Fungal genetics and biology : FG & B.

[32]  I. Jakobsen,et al.  Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake , 2004 .

[33]  B. Bago,et al.  Differential morphogenesis of the extraradical mycelium of an arbuscular mycorrhizal fungus grown monoxenically on spatially heterogeneous culture media , 2004, Mycologia.

[34]  N. Amrhein,et al.  Evolutionary conservation of a phosphate transporter in the arbuscular mycorrhizal symbiosis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[35]  J. Goudet,et al.  High genetic variability and low local diversity in a population of arbuscular mycorrhizal fungi. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[36]  A. Hodge N capture by Plantago lanceolata and Brassica napus from organic material: the influence of spatial dispersion, plant competition and an arbuscular mycorrhizal fungus. , 2003, Journal of experimental botany.

[37]  J. Klironomos,et al.  VARIATION IN PLANT RESPONSE TO NATIVE AND EXOTIC ARBUSCULAR MYCORRHIZAL FUNGI , 2003 .

[38]  C. Ramsey,et al.  Rapid Turnover of Hyphae of Mycorrhizal Fungi Determined by AMS Microanalysis of 14C , 2003, Science.

[39]  P. Menozzi,et al.  Evidence of recombination in putative ancient asexuals. , 2003, Molecular biology and evolution.

[40]  P. Lammers,et al.  Carbon Export from Arbuscular Mycorrhizal Roots Involves the Translocation of Carbohydrate as well as Lipid , 2003, Plant Physiology.

[41]  J. Pérez‐Moreno,et al.  Mycorrhizas and nutrient cycling in ecosystems - a journey towards relevance? , 2003, The New phytologist.

[42]  A. Hodge Plant nitrogen capture from organic matter as affected by spatial dispersion, interspecific competition and mycorrhizal colonization. , 2003, The New phytologist.

[43]  D. Read,et al.  Epiparasitic plants specialized on arbuscular mycorrhizal fungi , 2002, Nature.

[44]  J. Bever,et al.  Divergent phenologies may facilitate the coexistence of arbuscular mycorrhizal fungi in a North Carolina grassland. , 2002, American journal of botany.

[45]  W. Zipfel,et al.  Tracking metabolism and imaging transport in arbuscular mycorrhizal fungi. Metabolism and transport in AM fungi , 2002, Plant and Soil.

[46]  W. Zipfel,et al.  Tracking metabolism and imaging transport in arbuscular mycorrhizal fungi , 2002 .

[47]  J. Jansa,et al.  A phosphate transporter expressed in arbuscule-containing cells in potato , 2001, Nature.

[48]  P. Lammers,et al.  The Glyoxylate Cycle in an Arbuscular Mycorrhizal Fungus. Carbon Flux and Gene Expression , 2001 .

[49]  I. Maldonado-Mendoza,et al.  A phosphate transporter gene from the extra-radical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in response to phosphate in the environment. , 2001, Molecular plant-microbe interactions : MPMI.

[50]  A. Hodge,et al.  An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material , 2001, Nature.

[51]  A. Hodge Arbuscular mycorrhizal fungi influence decomposition of, but not plant nutrient capture from, glycine patches in soil. , 2001, The New phytologist.

[52]  P. Becker,et al.  Are ectomycorrhizas more abundant than arbuscular mycorrhizas in tropical heath forests , 2001 .

[53]  Y. Shachar-Hill,et al.  Could the urea cycle be translocating nitrogen in the arbuscular mycorrhizal symbiosis? , 2001, The New phytologist.

[54]  A. Johansen,et al.  Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi , 2000, Plant and Soil.

[55]  D. Redecker,et al.  Glomalean fungi from the Ordovician. , 2000, Science.

[56]  A. Heinemeyer,et al.  The impact of elevated CO2 and global climate change on arbuscular mycorrhizas: a mycocentric approach , 2000 .

[57]  A. Hodge,et al.  Are microorganisms more effective than plants at competing for nitrogen? , 2000, Trends in plant science.

[58]  T. Boller,et al.  Transport of 15N from a soil compartment separated by a polytetrafluoroethylene membrane to plant roots via the hyphae of arbuscular mycorrhizal fungi , 2000 .

[59]  A. Hodge,et al.  An arbuscular mycorrhizal inoculum enhances root proliferation in, but not nitrogen capture from, nutrient-rich patches in soil. , 2000, The New phytologist.

[60]  M. J. Harrison,et al.  MOLECULAR AND CELLULAR ASPECTS OF THE ARBUSCULAR MYCORRHIZAL SYMBIOSIS. , 1999, Annual review of plant physiology and plant molecular biology.

[61]  Y. Shachar-Hill,et al.  Carbon uptake and the metabolism and transport of lipids in an arbuscular mycorrhiza , 1999, Plant physiology.

[62]  P. Olsson,et al.  Effects of various organic compounds on growth and phosphorus uptake of an arbuscular mycorrhizal fungus , 1999 .

[63]  Ian R. Sanders,et al.  Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity , 1998, Nature.

[64]  B. Forde,et al.  An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. , 1998, Science.

[65]  J. Graham,et al.  Functioning of mycorrhizal associations along the mutualism–parasitism continuum* , 1997 .

[66]  J. Kaye,et al.  Competition for nitrogen between plants and soil microorganisms. , 1997, Trends in ecology & evolution.

[67]  A. Johansen,et al.  Nitrogen metabolism of external hyphae of the arbuscular mycorrhizal fungus Glomus intraradices , 1996 .

[68]  B. Bago,et al.  Nitrate depletion and pH changes induced by the extraradical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown in monoxenic culture. , 1996, The New phytologist.

[69]  R. Azcón,et al.  Physiological and nutritional responses by Lactuca Sativa L. to nitrogen sources and mycorrhizal fungi under drought conditions , 1996, Biology and Fertility of Soils.

[70]  M. J. Harrison,et al.  A phosphate transporter from the mycorrhizal fungus Glomus versiforme , 1995, Nature.

[71]  A. Watkinson,et al.  Multi-functionality and biodiversity in arbuscular mycorrhizas. , 1995, Trends in ecology & evolution.

[72]  E. Joner,et al.  Growth and extracellular phosphatase activity of arbuscular mycorrhizal hyphae as influenced by soil organic matter , 1995 .

[73]  A. Hodge,et al.  Chitinolytic enzymes of pathogenic and ectomycorrhizal fungi , 1995 .

[74]  T. Taylor,et al.  Four hundred-million-year-old vesicular arbuscular mycorrhizae. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[75]  J. Barea,et al.  The improvement of plant N acquisition from an ammonium-treated, drought-stressed soil by the fungal symbiont in arbuscular mycorrhizae , 1994, Mycorrhiza.

[76]  D. Read,et al.  Mycorrhizas in ecosystems , 1991, Experientia.

[77]  J. L. Harley The significance of mycorrhiza , 1989 .

[78]  C. Reid,et al.  Association of vesicular-arbuscular mycorrhizal hyphae with soil organic particles , 1983 .

[79]  M. Drew,et al.  COMPARISON OF THE EFFECTS OF A LOCALISED SUPPLY OF PHOSPHATE, NITRATE, AMMONIUM AND POTASSIUM ON THE GROWTH OF THE SEMINAL ROOT SYSTEM, AND THE SHOOT, IN BARLEY , 1975 .

[80]  B. Mosse Observations on the extra-matrical mycelium of a vesicular-arbuscular endophyte , 1959 .

[81]  T. Nicolson Mycorrhiza in the Gramineae: I. Vesicular-arbuscular endophytes, with special reference to the external phase , 1959 .

[82]  M. V. D. van der Heijden,et al.  Molecular trait indicators: moving beyond phylogeny in arbuscular mycorrhizal ecology. , 2010, The New phytologist.

[83]  K. Treseder,et al.  The brighter side of soils: quantum dots track organic nitrogen through fungi and plants. , 2009, Ecology.

[84]  H. Rogniaux,et al.  Fungal proteins in the extra-radical phase of arbuscular mycorrhiza: a shotgun proteomic picture. , 2009, The New phytologist.

[85]  A. Hodge,et al.  Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. , 2009, The New phytologist.

[86]  A. Fitter,et al.  The magnitude and control of carbon transfer between plants linked by a common mycorrhizal network , 1999 .

[87]  Sally E. Smith,et al.  Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhizas. V, Is H+-ATPase a component of ATP-hydrolysing enzyme activities in plant-fungus interfaces ? , 1991 .