Computation of multi-region relaxed magnetohydrodynamic equilibria

We describe the construction of stepped-pressure equilibria as extrema of a multi-region, relaxed magnetohydrodynamic (MHD) energy functional that combines elements of ideal MHD and Taylor relaxation, and which we call MRXMHD. The model is compatible with Hamiltonian chaos theory and allows the three-dimensional MHD equilibrium problem to be formulated in a well-posed manner suitable for computation. The energy-functional is discretized using a mixed finite-element, Fourier representation for the magnetic vector potential and the equilibrium geometry; and numerical solutions are constructed using the stepped-pressure equilibrium code, SPEC. Convergence studies with respect to radial and Fourier resolution are presented.

[1]  J B Taylor,et al.  Relaxation and magnetic reconnection in plasmas , 1986 .

[2]  John M. Greene,et al.  A method for determining a stochastic transition , 1979, Hamiltonian Dynamical Systems.

[3]  L. Chacón,et al.  Nonlinear three-dimensional verification of the SPECYL and PIXIE3D magnetohydrodynamics codes for fusion plasmas , 2010 .

[4]  S. Hudson,et al.  Eigenvalue problems for Beltrami fields arising in a three-dimensional toroidal magnetohydrodynamic equilibrium problem , 2007 .

[5]  P. Garabedian,et al.  Numerical analysis of equilibria with islands in magnetohydrodynamics , 1982 .

[6]  S. Hudson,et al.  Equilibria and stability in partially relaxed plasma–vacuum systems , 2007 .

[7]  D. Biskamp,et al.  Reconnection processes and scaling laws in reversed field pinch magnetohydrodynamics , 1996 .

[8]  M. Taylor A High Performance Spectral Code for Nonlinear MHD Stability , 1994 .

[9]  The convergence of analytic high-β equilibrium in a finite aspect ratio tokamak , 2008 .

[10]  A. Lichtenberg,et al.  Regular and Chaotic Dynamics , 1992 .

[11]  B. M. Fulk MATH , 1992 .

[12]  A. Boozer,et al.  Magnetic islands and perturbed plasma equilibria , 2003 .

[13]  B. Carreras,et al.  Multi-scale MHD analysis incorporating pressure transport equation for beta-increasing LHD plasma , 2011 .

[14]  Luis Chacon,et al.  An optimal, parallel, fully implicit Newton–Krylov solver for three-dimensional viscoresistive magnetohydrodynamicsa) , 2008 .

[15]  On three‐dimensional toroidal surface current equilibria with rational rotational transform , 1994 .

[16]  S. Aubry The twist map, the extended Frenkel-Kontorova model and the devil's staircase , 1983 .

[17]  J. Meiss Symplectic maps, variational principles, and transport , 1992 .

[18]  S. Hudson An Expression for the Temperature Gradient in Chaotic Fields , 2009 .

[19]  W. Newcomb Magnetic Differential Equations , 1959 .

[20]  R. L. Dewar,et al.  Non-axisymmetric, multi-region relaxed magnetohydrodynamic equilibrium solutions , 2011, 1107.5202.

[21]  C. Sovinec,et al.  Numerical simulation of current evolution in the Compact Toroidal Hybrid , 2012 .

[22]  A. Boozer Three‐dimensional stellarator equilibria by iteration , 1984 .

[23]  Michel Howard Kevin,et al.  Development and application of HINT2 to helical system plasmas , 2006 .

[24]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[25]  R. Dewar,et al.  Helical bifurcation and tearing mode in a plasma—a description based on Casimir foliation , 2012 .

[26]  D. Lortz,et al.  STABILITY OF FORCE-FREE PLASMA-VACUUM EQUILIBRIA , 1994 .

[27]  C. Hegna Healing of magnetic islands in stellarators by plasma flow , 2011 .

[28]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[29]  J. Manickam,et al.  Three‐dimensional stellarator equilibrium as an Ohmic steady state , 1986 .

[30]  Luis Chacon,et al.  Volume preserving integrators for solenoidal fields on a grid , 2005 .

[31]  A. Morbidelli,et al.  On the relationship between the Bruno function and the breakdown invariant tori , 2000 .

[32]  S. Kruger,et al.  NIMROD: A computational laboratory for studying nonlinear fusion magnetohydrodynamics , 2003 .

[33]  Igor Mezić,et al.  Ergodic theory and visualization. I. Mesochronic plots for visualization of ergodic partition and invariant sets. , 2008, Chaos.

[34]  M. G. Rusbridge A model of field reversal in the diffuse pinch , 1977 .

[35]  R. Kaiser,et al.  Relaxed plasma-vacuum systems , 2001 .

[36]  P. Garabedian MAGNETOHYDRODYNAMIC STABILITY OF FUSION PLASMAS , 1998 .

[37]  A. Boozer,et al.  Computation of three-dimensional tokamak and spherical torus equilibria , 2007 .

[38]  H. Uecker,et al.  Relaxed plasma–vacuum states in cylinders , 2004 .

[39]  James D. Meiss,et al.  Transport in Hamiltonian systems , 1984 .

[40]  M. Kruskal,et al.  Equilibrium of a Magnetically Confined Plasma in a Toroid , 1958 .

[41]  R. Dewar,et al.  Variational method for three-dimensional toroidal equilibria , 1984 .

[42]  R. Kress A boundary integral equation method for a Neumann boundary problem for force-free fields , 1981 .

[43]  A. Boozer,et al.  Current density and plasma displacement near perturbed rational surfaces , 2010 .

[44]  C. Hegna Plasma flow healing of magnetic islands in stellaratorsa) , 2012 .

[45]  G. Spies Relaxed plasma-vacuum systems with pressure , 2003 .

[46]  M. Berger Introduction to magnetic helicity , 1999 .

[47]  L. Woltjer,et al.  A THEOREM ON FORCE-FREE MAGNETIC FIELDS. , 1958, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Zensho Yoshida Eigenfunction expansions associated with the curl derivatives in cylindrical geometries: Completeness of Chandrasekhar–Kendall eigenfunctions , 1992 .

[49]  S. Hudson,et al.  Temperature contours and ghost surfaces for chaotic magnetic fields. , 2008, Physical review letters.

[50]  J. Mather,et al.  Existence of quasi-periodic orbits for twist homeomorphisms of the annulus , 1982 .

[51]  Oscar P. Bruno,et al.  Existence of three‐dimensional toroidal MHD equilibria with nonconstant pressure , 1996 .

[52]  P. B. Snyder,et al.  Ideal and resistive edge stability calculations with M3D-C1 , 2010 .

[53]  S. Hirshman,et al.  Explicit spectrally optimized Fourier series for nested magnetic surfaces , 1998 .

[54]  Octavio Betancourt,et al.  BETAS, a spectral code for three-dimensional magnetohydrodynamic equilibrium and nonlinear stability calculations , 1988 .

[55]  S. P. Hirshman,et al.  Preconditioned descent algorithm for rapid calculations of magnetohydrodynamic equilibria , 1991 .

[56]  L Chacón,et al.  Local and nonlocal parallel heat transport in general magnetic fields. , 2010, Physical review letters.

[57]  G. Spies,et al.  Relaxed plasmas in external magnetic fields , 1994 .

[58]  M E Fenstermacher,et al.  Suppression of large edge-localized modes in high-confinement DIII-D plasmas with a stochastic magnetic boundary. , 2004, Physical review letters.

[59]  Stephen Wiggins,et al.  A method for visualization of invariant sets of dynamical systems based on the ergodic partition. , 1999, Chaos.

[60]  J. Freidberg,et al.  Existence and calculation of sharp boundary magnetohydrodynamic equilibrium in three‐dimensional toroidal geometry , 1986 .

[61]  H. Gardner,et al.  CALCULATION OF MERCIER STABILITY LIMITS OF TOROIDAL HELIACS , 1992 .

[62]  W. A. Cooper,et al.  Tokamak magnetohydrodynamic equilibrium states with axisymmetric boundary and a 3D helical core. , 2010, Physical review letters.

[63]  Yoshikazu Giga,et al.  Remarks on spectra of operator rot , 1990 .

[64]  Stuart R. Hudson,et al.  Relaxed Plasma Equilibria and Entropy-Related Plasma Self-Organization Principles , 2008, Entropy.

[65]  Allen H. Boozer,et al.  Physics of magnetically confined plasmas , 2005 .

[66]  S. Hudson,et al.  Stepped pressure profile equilibria in cylindrical plasmas via partial Taylor relaxation , 2006, Journal of Plasma Physics.

[67]  L. Spitzer The Stellarator Concept , 1958, IEEE Transactions on Plasma Science.

[68]  S. Hirshman,et al.  SIESTA: A scalable iterative equilibrium solver for toroidal applications , 2011 .

[69]  S. Hudson A regularized approach for solving magnetic differential equations and a revised iterative equilibrium algorithm , 2010 .

[70]  S. Hudson,et al.  Relaxed MHD states of a multiple region plasma , 2009, 0902.3318.

[71]  R. Kress,et al.  On constant-alpha force-free fields in a torus , 1986 .

[72]  Meiss Class renormalization: Islands around islands. , 1986, Physical review. A, General physics.

[73]  B. Carreras,et al.  Improved stability due to local pressure flattening in stellarators , 2000 .

[74]  P. Merkel,et al.  Three-dimensional free boundary calculations using a spectral Green's function method , 1986 .

[75]  R. L. Dewar,et al.  Stellarator symmetry , 1998 .

[76]  Steven Paul Hirshman,et al.  Optimized Fourier representations for three-dimensional magnetic surfaces , 1985 .

[77]  Li,et al.  Fractal dimension of cantori. , 1986, Physical review letters.

[78]  Henry S. Greenside,et al.  Calculation of three-dimensional MHD equilibria with islands and stochastic regions , 1986 .

[79]  Stephen C. Jardin,et al.  A high-order implicit finite element method for integrating the two-fluid magnetohydrodynamic equations in two dimensions , 2007, J. Comput. Phys..

[80]  V. I. Arnol'd,et al.  PROOF OF A THEOREM OF A.?N.?KOLMOGOROV ON THE INVARIANCE OF QUASI-PERIODIC MOTIONS UNDER SMALL PERTURBATIONS OF THE HAMILTONIAN , 1963 .

[81]  A. Bhattacharjee,et al.  Theory of pressure-induced islands and self-healing in three-dimensional toroidal magnetohydrodynami , 1995 .

[82]  S. Hudson Destruction of invariant surfaces and magnetic coordinates for perturbed magnetic fields , 2003 .

[83]  Kenji Harafuji,et al.  Computational study of three-dimensional magnetohydrodynamic equilibria in toroidal helical systems , 1987 .

[84]  H. Grad TOROIDAL CONTAINMENT OF A PLASMA. , 1967 .

[85]  S. Mahajan,et al.  Variational principles and self-organization in two-fluid plasmas. , 2002, Physical review letters.

[86]  R. MacKay,et al.  STOCHASTICITY AND TRANSPORT IN HAMILTONIAN SYSTEMS , 1984 .

[87]  P. Ghendrih,et al.  Control of Hamiltonian chaos as a possible tool to control anomalous transport in fusion plasmas. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[88]  J. C. Whitson,et al.  Steepest‐descent moment method for three‐dimensional magnetohydrodynamic equilibria , 1983 .

[89]  J. B. Taylor,et al.  Relaxation of toroidal plasma and generation of reverse magnetic fields , 1974 .

[90]  Gerald E. Marsh,et al.  Force-Free Magnetic Fields: Solutions, Topology and Applications , 1996 .

[91]  Andrew G. Glen,et al.  APPL , 2001 .