Croconic Acid Doped Triglycine Sulfate: Crystal Structure, UV-Vis, FTIR, Raman, Photoluminescence Spectroscopy, and Dielectric Properties

Triglycine sulfate (TGS) single crystals doped with croconic acid (CA) were grown by evaporation from aqueous solutions. X-ray diffraction analysis shows a slight reduction in unit cell volume in TGS:CA compared to pure TGS crystals. The polarized Raman and near-infrared absorption spectra show that the positions of most lines resulting from inter- and intramolecular vibrations are in good agreement with those in spectra of undoped TGS crystals. The inclusion of CA in TGS is confirmed by the presence of bands characteristic of CA in the infrared-Fourier transform spectra. The ultraviolet-visible absorption spectra of TGS:CA are characterized by the presence of additional absorption bands (compared to the spectra of pure TGS) located in the transparent region of pure TGS. In the photon energy region 1.6–3.6 eV, a strong “green” luminescence band is present in TGS:CA upon excitation at λ = 325 nm. The position of the emission band depends on the wavelength of the exciting light. Doping of TGS with CA causes pinning of domain walls, which is accompanied by a decrease in amplitude and frequency dispersion of the dielectric anomaly at the phase transition, a decrease in the switchable polarization and an increase in the coercive field of hysteresis loops.

[1]  A. Redkov,et al.  Structural Properties and Dielectric Hysteresis of Molecular Organic Ferroelectric Grown from Different Solvents , 2021, Crystals.

[2]  Daniel P. Miller,et al.  Seeking Out Heterogeneous Hydrogen Bonding in a Self-Assembled 2D Cocrystal of Croconic Acid and Benzimidazole on Au(111) , 2021 .

[3]  A. N. Smirnov,et al.  Crystal Structure, Raman Spectroscopy and Dielectric Properties of New Semiorganic Crystals Based on 2-Methylbenzimidazole , 2019, Crystals.

[4]  N. Udayashankar,et al.  Enhanced structural, optical, thermal, mechanical and electrical properties by a noval approach (nanoparticle doping) on ferroelectric triglycine sulphate single crystal , 2019, Applied Physics A.

[5]  S. Sagadevan,et al.  Enhancement of electro-optic and structural properties of TGS single crystals on doping with l-glutamic acid , 2018, Journal of Materials Science: Materials in Electronics.

[6]  B. Kumar,et al.  Mechanical investigations on piezo-/ferrolectric maleic acid-doped triglycine sulphate single crystal using nanoindentation technique , 2018 .

[7]  Promila,et al.  Visible absorbing croconium dyes with intramolecular hydrogen bonding: A combined experimental and computational study , 2017 .

[8]  P. Ramasamy,et al.  Effect of Rochelle salt on growth, optical, photoluminescence, photoconductive and piezoelectric properties of the triglycine sulphate single crystal , 2017 .

[9]  S. Ishibashi,et al.  Proton tautomerism for strong polarization switching , 2017, Nature Communications.

[10]  Almuatasim Alomari,et al.  Growth and Optical Characterization of Doped Triglycine Sulfate (TGS) Crystals , 2016 .

[11]  P. Deepthi,et al.  Optical, dielectric & ferroelectric studies on amino acids doped TGS single crystals , 2016 .

[12]  Leon Hirsch,et al.  Optical Processes In Semiconductors , 2016 .

[13]  V. Shut,et al.  Formation of a regular domain structure in TGS–TGS + Cr crystals with a profile impurity distribution , 2015 .

[14]  B. Kumar,et al.  Performance of crystal violet doped triglycine sulfate single crystals for optical and communication applications , 2015 .

[15]  M. Schmidt,et al.  Effect of Surface Properties on the Microstructure, Thermal, and Colloidal Stability of VB2 Nanoparticles , 2015 .

[16]  Hui Yang,et al.  A new 3D silver(I) coordination polymer with croconate ligand displaying green luminescent , 2015 .

[17]  P. Deepti,et al.  Structural and Optical Studies of Potential Ferroelectric Crystal: KDP Doped TGS , 2013 .

[18]  H. Okamoto,et al.  Large second-order optical nonlinearity in a ferroelectric molecular crystal of croconic acid with strong intermolecular hydrogen bonds , 2013 .

[19]  B. Kumar,et al.  Enhancement in ferroelectric, pyroelectric and photoluminescence properties in dye doped TGS crystals , 2012 .

[20]  Jiban Podder,et al.  Synthesis, Growth, and Electrical Transport Properties of Pure and LiSO4-Doped Triglycine Sulphate Crystal , 2012 .

[21]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[22]  Jiban Podder,et al.  Crystallization and Characterization of Triglycine Sulfate(TGS) Crystal Doped with NiSO4 , 2011 .

[23]  S. Dharmaprakash,et al.  Iminodiacetic acid doped ferroelectric triglycine sulphate crystal: Crystal growth and characterization , 2011 .

[24]  V. Stadnyk,et al.  Optical Properties of TGS Crystal with L-Valine Admixture , 2010 .

[25]  C. Sekar,et al.  The effect of nitric acid (HNO3) on growth, spectral, thermal and dielectric properties of triglycine sulphate (TGS) crystal. , 2010, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[26]  V. Lemanov,et al.  Permittivity and conductivity of triglycine sulfate films on Al/SiO2 and α-Al2O3 substrates , 2010 .

[27]  Y. Tokura,et al.  Above-room-temperature ferroelectricity in a single-component molecular crystal , 2010, Nature.

[28]  K. Sreenivas,et al.  Growth of 4-(dimethylamino) benzaldehyde doped triglycine sulphate single crystals and its characterization , 2009 .

[29]  V. Lemanov,et al.  GROWTH, OPTICAL IMAGING AND DIELECTRIC PROPERTIES OF FERROELECTRIC BETAINE PHOSPHITE AND TRIGLYCINE SULPHATE FILMS , 2009 .

[30]  Richard J. Gildea,et al.  OLEX2: a complete structure solution, refinement and analysis program , 2009 .

[31]  S. Bhuvaneswari,et al.  Effect of doping an organic molecule ligand on TGS single crystals. , 2008, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[32]  R. Choudhury,et al.  Single crystal neutron diffraction study of triglycine sulphate revisited , 2008 .

[33]  S. Miga,et al.  Non-linear Dielectric Response of Ferroelectric and Relaxor Materials , 2008 .

[34]  R. Malekfar,et al.  Raman Scattering and Electrical Properties of TGS:PCo (9%) Crystal as Ambient Temperature IR Detector , 2008 .

[35]  M. Spiteller,et al.  Solid-state linear polarized IR-spectroscopy of croconic and rhodizonic acids , 2008 .

[36]  R. Jayavel,et al.  Effect of amino acid doping on the growth and ferroelectric properties of triglycine sulphate single crystals , 2008 .

[37]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[38]  V. Shut,et al.  Formation of the Unipolar State in Hydrogenous Ferroelectric Crystals , 2007 .

[39]  S. Miga,et al.  Temperature dependences of nonlinear dielectric susceptibilities of triglycine sulphate near ferroelectric phase transition , 2007 .

[40]  L. Pintilie,et al.  Pyroelectric coefficient manipulation in doped TGS crystals , 2006 .

[41]  J. Etheridge,et al.  Structure and microstructure of hexagonal Ba3Ti2RuO9 by electron diffraction and microscopy. , 2005, Acta crystallographica. Section B, Structural science.

[42]  K. Sreenivas,et al.  Characterization of phosphoric acid doped TGS single crystals , 2004 .

[43]  O. V. Rogazinskaya,et al.  Internal bias field in TGS crystals doped with different impurities , 2004 .

[44]  R. Jayavel,et al.  Prevention of depoling in TGS by alanine substitution: an interpretation based on a neutron-diffraction study , 2002 .

[45]  J. Alonso,et al.  Croconines: new acidochromic dyes for the near infrared region , 2002 .

[46]  P. Santhanaraghavan,et al.  Growth and characterisation of l-cystine doped TGS crystals , 2001 .

[47]  D. Braga,et al.  Crystallization from hydrochloric acid affords the solid-state structure of croconic acid (175 years after its discovery) and a novel hydrogen-bonded network , 2001 .

[48]  G. Nolze,et al.  POWDER CELL– a program for the representation and manipulation of crystal structures and calculation of the resulting X‐ray powder patterns , 1996 .

[49]  M. Järvinen Application of symmetrized harmonics expansion to correction of the preferred orientation effect , 1993 .

[50]  P. Kolandaivel,et al.  Laser Raman and FT-IR studies of pure and Zn-doped TGS , 1993 .

[51]  Ravindra B. Lal,et al.  Growth and properties of triglycine sulfate (TGS) crystals: Review , 1993 .

[52]  J. Bérar,et al.  E.s.d.'s and estimated probable error obtained in Rietveld refinements with local correlations , 1991 .

[53]  R. J. Hill,et al.  Profile agreement indices in Rietveld and pattern-fitting analysis , 1990 .

[54]  Li Bing,et al.  Raman studies of the TGS-TGFB system and its ferroelectric phase transition , 1990 .

[55]  Roger W. Whatmore,et al.  Pyroelectric devices and materials , 1986 .

[56]  W. A. Dollase,et al.  Correction of intensities for preferred orientation in powder diffractometry: application of the March model , 1986 .

[57]  E. Erdle,et al.  Mini-Excitons and Lattice Dynamics in Mixed CT-Crystals: An ESR, Optical and Raman Spectroscopical Study , 1980 .

[58]  T. Breczewski,et al.  Dielectric and pyroelectric properties of TGS crystals doped with nitroaniline molecules , 1980 .

[59]  R. S. Krishnan,et al.  Raman spectrum of crystalline tri-glycine sulphate (NH3.CH3.COO)3H2SO4 , 1958 .

[60]  M. Washino,et al.  The Dipole Moments and Molecular Structures of Croconic Acid and Dimethyl Croconate , 1958 .

[61]  J. P. Remeika,et al.  Ferroelectricity of Glycine Sulfate , 1956 .