The fabrication of dense and uniform InAs nanowire arrays

Nanowires are important candidates for use in future electronics, photonics and thermoelectrics applications. We focus here in particular on nanowires for use in thermoelectric power generation and present a method of fabricating dense uniform InAs nanowire arrays amenable to future incorporation of advanced heterostructures that could further increase the thermoelectric performance of these nanowires. In these applications it will be important to have the nanowires densely packed in order to give an appreciable amount of power output. Here we present the fabrication of such dense arrays, using metal-particle seeded growth and chemical beam epitaxy, where the metal particles are defined by electron beam lithography, metal evaporation and lift-off. We evaluate the potential of chemical beam epitaxy for the growth of dense, freestanding InAs nanowire arrays and describe the process that enabled us to achieve areal packing densities of up to 19% with a variation of only a few per cent in nanowire diameter and height. We close by discussing how even higher areal packing densities can be achieved.

[1]  Masaya Notomi,et al.  Quantum Wire Fabrication by E-Beam Elithography Using High-Resolution and High-Sensitivity E-Beam Resist ZEP-520 , 1992 .

[2]  M. Dresselhaus,et al.  Thermoelectric figure of merit of a one-dimensional conductor. , 1993, Physical review. B, Condensed matter.

[3]  H. Okamoto Au-In (gold-indium) , 1993 .

[4]  Kenji Hiruma,et al.  Growth and optical properties of nanometer‐scale GaAs and InAs whiskers , 1995 .

[5]  R. V. Duyne,et al.  Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces , 1995 .

[6]  Lars Samuelson,et al.  Gold Nanoparticles: Production, Reshaping, and Thermal Charging , 1999 .

[7]  Yu-Ming Lin,et al.  Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires , 2000 .

[8]  Yu-Ming Lin,et al.  Bismuth nanowire arrays: Synthesis and galvanomagnetic properties , 2000 .

[9]  M S Sander,et al.  Electrodeposition of ordered Bi2Te3 nanowire arrays. , 2001, Journal of the American Chemical Society.

[10]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[11]  Lars Samuelson,et al.  One-dimensional heterostructures in semiconductor nanowhiskers , 2002 .

[12]  Charles M. Lieber,et al.  Epitaxial core–shell and core–multishell nanowire heterostructures , 2002, Nature.

[13]  Yu-Ming Lin,et al.  Thermoelectric properties of superlattice nanowires , 2003 .

[14]  Lars Samuelson,et al.  Fabrication of individually seeded nanowire arrays by vapour–liquid–solid growth , 2003 .

[15]  Ronald Gronsky,et al.  Direct Electrodeposition of Highly Dense 50 nm Bi2Te3-ySey Nanowire Arrays , 2003 .

[16]  A. Majumdar Thermoelectricity in Semiconductor Nanostructures , 2004, Science.

[17]  A. Majumdar,et al.  Fabrication and characterization of a nanowire/polymer-based nanocomposite for a prototype thermoelectric device , 2004, Journal of Microelectromechanical Systems.

[18]  Lars Samuelson,et al.  Electron transport in InAs nanowires and heterostructure nanowire devices , 2004 .

[19]  U. Gösele,et al.  Silicon nanowhiskers grown on 〈111〉Si substrates by molecular-beam epitaxy , 2004 .

[20]  Lars Samuelson,et al.  Solid-phase diffusion mechanism for GaAs nanowire growth , 2004, Microscopy and Microanalysis.

[21]  Lars Montelius,et al.  Nanowire Arrays Defined by Nanoimprint Lithography , 2004 .

[22]  Natalio Mingo,et al.  Thermoelectric figure of merit and maximum power factor in III–V semiconductor nanowires , 2004 .

[23]  Lars Samuelson,et al.  Role of surface diffusion in chemical beam epitaxy of InAs nanowires , 2004 .

[24]  V. Ustinov,et al.  Diffusion-induced growth of GaAs nanowhiskers during molecular beam epitaxy: Theory and experiment , 2005 .

[25]  M. Dresselhaus,et al.  Thermal conductivity of simple and tubular nanowire composites in the longitudinal direction , 2005 .

[26]  M. Larsson,et al.  Energy transport in one-dimensional thermoelectric systems , 2006 .

[27]  Jonas Johansson,et al.  Growth related aspects of epitaxial nanowires , 2006 .

[28]  Angelica M. Stacy,et al.  Assembly and measurement of a hybrid nanowire-bulk thermoelectric device , 2006 .

[29]  N. Mingo Erratum: “Thermoelectric figure of merit and maximum power factor in III–V semiconductor nanowires” [Appl. Phys. Lett. 84, 2652 (2004)] , 2006 .

[30]  L. Samuelson,et al.  Surface diffusion effects on growth of nanowires by chemical beam epitaxy , 2007 .

[31]  Lars Samuelson,et al.  Strain mapping in free-standing heterostructured wurtzite InAs/InP nanowires , 2007 .

[32]  W. Seifert,et al.  Diameter-dependent growth rate of InAs nanowires , 2007 .

[33]  Otto L. Muskens,et al.  Epitaxial Growth of Aligned Semiconductor Nanowire Metamaterials for Photonic Applications , 2008 .

[34]  L. Samuelson,et al.  Transients in the formation of nanowire heterostructures. , 2008, Nano letters.