A Monte Carlo Study on the Finite Sample Properties of the Gibbs Sampling Method for a Stochastic Frontier Model

In this paper we use Monte Carlo study to investigate the finite sample properties of the Bayesian estimator obtained by the Gibbs sampler and its classical counterpart (i.e. the MLE) for a stochastic frontier model. Our Monte Carlo results show that the MSE performance of the estimates of Gibbs sampling are substantially better than that of the MLE.

[1]  R. Stevenson Likelihood functions for generalized stochastic frontier estimation , 1980 .

[2]  W. Meeusen,et al.  Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error , 1977 .

[3]  Peter Schmidt,et al.  A Monte Carlo study of estimators of stochastic frontier production functions , 1980 .

[4]  S. E. Hills,et al.  Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling , 1990 .

[5]  Cliff C. J. Huang Estimation of Stochastic Frontier Production Function and Technical Inefficiency via the EM Algorithm , 1984 .

[6]  C. Lovell,et al.  On the estimation of technical inefficiency in the stochastic frontier production function model , 1982 .

[7]  W. Greene A Gamma-distributed stochastic frontier model , 1990 .

[8]  Jacek Osiewalski,et al.  Numerical Tools for the Bayesian Analysis of Stochastic Frontier Models , 1998 .

[9]  Siddhartha Chib,et al.  Markov Chain Monte Carlo Simulation Methods in Econometrics , 1996, Econometric Theory.

[10]  Gary Koop,et al.  Bayesian efficiency analysis through individual effects: Hospital cost frontiers , 1997 .

[11]  G. Judge,et al.  The Theory and Practice of Econometrics , 1981 .

[12]  D. Aigner,et al.  P. Schmidt, 1977,?Formulation and estimation of stochastic frontier production function models,? , 1977 .

[13]  P. Ferreira A Bayesian Analysis of a Switching Regression Model: Known Number of Regimes , 1975 .

[14]  John Geweke,et al.  Efficient Simulation from the Multivariate Normal and Student-t Distributions Subject to Linear Constraints and the Evaluation of Constraint Probabilities , 1991 .

[15]  M. Steel,et al.  Stochastic frontier models: a bayesian perspective , 1994 .

[16]  T. Coelli Estimators and hypothesis tests for a stochastic frontier function: A Monte Carlo analysis , 1995 .

[17]  Peter E. Kennedy,et al.  Fighting the teflon factor: Comparing classical and Bayesian estimators for autocorrelated errors , 1991 .

[18]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .