Sparse channel separation using random probes
暂无分享,去创建一个
[1] J. Claerbout,et al. Robust Modeling With Erratic Data , 1973 .
[2] F. Santosa,et al. Linear inversion of ban limit reflection seismograms , 1986 .
[3] E E Fenimore,et al. New family of binary arrays for coded aperture imaging. , 1989, Applied optics.
[4] J. A. Catipovic,et al. Performance limitations in underwater acoustic telemetry , 1990 .
[5] J. Scales,et al. Regularisation of nonlinear inverse problems: imaging the near-surface weathering layer , 1990 .
[6] M. Talagrand,et al. Probability in Banach spaces , 1991 .
[7] E. Giné,et al. Decoupling: From Dependence to Independence , 1998 .
[8] Jean-Jacques Fuchs,et al. Multipath time-delay detection and estimation , 1999, IEEE Trans. Signal Process..
[9] Xiaoming Huo,et al. Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.
[10] Bhaskar D. Rao,et al. Sparse channel estimation via matching pursuit with application to equalization , 2002, IEEE Trans. Commun..
[11] Rémi Gribonval,et al. Sparse representations in unions of bases , 2003, IEEE Trans. Inf. Theory.
[12] M. Talagrand. The Generic Chaining , 2005 .
[13] E. Candès,et al. Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.
[14] M. Talagrand. The Generic chaining : upper and lower bounds of stochastic processes , 2005 .
[15] Emmanuel J. Candès,et al. Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions , 2004, Found. Comput. Math..
[16] Emmanuel J. Candès,et al. Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.
[17] Richard G. Baraniuk,et al. Random Filters for Compressive Sampling and Reconstruction , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.
[18] Mário A. T. Figueiredo,et al. Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.
[19] Terence Tao,et al. The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.
[20] M. Rudelson,et al. On sparse reconstruction from Fourier and Gaussian measurements , 2008 .
[21] Yin Zhang,et al. Fixed-Point Continuation for l1-Minimization: Methodology and Convergence , 2008, SIAM J. Optim..
[22] Wotao Yin,et al. Bregman Iterative Algorithms for (cid:2) 1 -Minimization with Applications to Compressed Sensing ∗ , 2008 .
[23] Mike E. Davies,et al. Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.
[24] Rebecca Willett,et al. Fast disambiguation of superimposed images for increased field of view , 2008, 2008 15th IEEE International Conference on Image Processing.
[25] R. DeVore,et al. A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .
[26] David J Brady,et al. Superimposed video disambiguation for increased field of view. , 2008, Optics express.
[27] E. Candès. The restricted isometry property and its implications for compressed sensing , 2008 .
[28] J. Tropp. On the conditioning of random subdictionaries , 2008 .
[29] Felix J. Herrmann,et al. Non-parametric seismic data recovery with curvelet frames , 2008 .
[30] Justin K. Romberg,et al. Compressive Sensing by Random Convolution , 2009, SIAM J. Imaging Sci..
[31] J. Tropp,et al. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, Commun. ACM.
[32] Thomas Strohmer,et al. High-Resolution Radar via Compressed Sensing , 2008, IEEE Transactions on Signal Processing.
[33] Rebecca Willett,et al. Compressive coded aperture imaging , 2009, Electronic Imaging.
[34] Holger Rauhut,et al. Circulant and Toeplitz matrices in compressed sensing , 2009, ArXiv.
[35] Justin Romberg,et al. Multiple channel estimation using spectrally random probes , 2009, Optical Engineering + Applications.
[36] F. Herrmann,et al. Compressive simultaneous full-waveform simulation , 2009 .
[37] Max Deffenbaugh,et al. Efficient seismic forward modeling using simultaneous random sources and sparsity , 2010 .
[38] Justin K. Romberg,et al. Beyond Nyquist: Efficient Sampling of Sparse Bandlimited Signals , 2009, IEEE Transactions on Information Theory.
[39] Robert D. Nowak,et al. Toeplitz Compressed Sensing Matrices With Applications to Sparse Channel Estimation , 2010, IEEE Transactions on Information Theory.
[40] Emmanuel J. Candès,et al. NESTA: A Fast and Accurate First-Order Method for Sparse Recovery , 2009, SIAM J. Imaging Sci..