Growth and electrical properties of epitaxial 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 thin film by pulsed laser deposition

[1]  Z. Wang,et al.  Domain Evolution and Piezoelectric Response across Thermotropic Phase Boundary in (K,Na)NbO3-Based Epitaxial Thin Films. , 2017, ACS applied materials & interfaces.

[2]  D. Sun,et al.  Composition, electric-field and temperature induced domain evolution in lead-free Bi0.5Na0.5TiO3-BaTiO3-SrTiO3 solid solutions by piezoresponse force microscopy , 2016 .

[3]  Nengneng Luo,et al.  Ferroelectricity and Self-Polarization in Ultrathin Relaxor Ferroelectric Films , 2016, Scientific Reports.

[4]  Feifei Wang,et al.  Ferroelectric and dielectric properties of La0.6Sr0.4CoO3-buffered 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 thin film by pulsed laser deposition , 2014 .

[5]  Jianbin Xu,et al.  Low-temperature preparation of self-polarized Pb(Mg1/3Nb2/3)O3–PbTiO3 films on well crystallized LaNiO3 electrodes , 2013 .

[6]  Jianguo Zhu,et al.  High permittivity 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 relaxor thin films for high-value, wide-temperature capacitor applications , 2012 .

[7]  Shujun Zhang,et al.  High performance ferroelectric relaxor-PbTiO3 single crystals: Status and perspective , 2012 .

[8]  Juan Jiang,et al.  Epitaxial PMN–PT thin films grown on buffered Si substrates using ceramic and single-crystal targets , 2011 .

[9]  Ho Won Jang,et al.  Giant Piezoelectricity on Si for Hyperactive MEMS , 2011, Science.

[10]  A. Safari,et al.  Leakage current behavior in lead-free ferroelectric (K,Na)NbO3-LiTaO3-LiSbO3 thin films , 2010 .

[11]  D. Remiens,et al.  Nanoscale study by piezoresponse force microscopy of relaxor 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 and 0.9Pb(Mg1/3Nb2/3)O3–0.1PbTiO3 thin films grown on platinum and LaNiO3 electrodes , 2010 .

[12]  Bruno Ando,et al.  Improved Energy Harvesting from Wideband Vibrations by Nonlinear Piezoelectric Converters , 2009 .

[13]  Chongjun He,et al.  Optical constants and dispersion behavior of PbMg1/3Nb2/3O3 single crystals , 2009 .

[14]  Y. Li,et al.  Properties of highly (100) oriented Pb(Mg1∕3,Nb2∕3)O3–PbTiO3 films on LaNiO3 bottom electrodes , 2007 .

[15]  D. Remiens,et al.  Low temperature perovskite crystallization of 70%PbMg1∕3Nb2∕3O3–30%PbTiO3 thin films deposited by sputtering and their electrical performance evaluation , 2007 .

[16]  Ryutaro Maeda,et al.  Smart optical microscanner with piezoelectric resonator, sensor, and tuner using Pb(Zr,Ti)O3 thin film , 2007 .

[17]  L. Martin,et al.  Leakage mechanisms in BiFeO3 thin films , 2007 .

[18]  J. Petzelt,et al.  The giant electromechanical response in ferroelectric relaxors as a critical phenomenon , 2006, Nature.

[19]  C. Choy,et al.  Composition control and electrical properties of PMN-PT thin films around the morphotropic boundary , 2004 .

[20]  Xiangcheng Chu,et al.  Texture Control of Sol‐Gel Derived Pb(Mg1/3Nb2/3)O3–PbTiO3 Thin Films Using Seeding Layer , 2004 .

[21]  Chee-leung Mak,et al.  Effects of composition of PbTiO₃ on optical properties of (1-x) PbMg[sub ⅓]Nb[sub ⅔]O₃-xPbTiO₃ thin films , 2004 .

[22]  G. Shirane,et al.  Phase diagram of the ferroelectric relaxor (1-x)PbMg1/3Nb2/3O3-xPbTiO3 , 2002, cond-mat/0203422.

[23]  Ronald E. Cohen,et al.  Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics , 2000, Nature.

[24]  Thomas R. Shrout,et al.  Fabrication of perovskite lead magnesium niobate , 1982 .