Particle shape manipulation and optimization in cooling crystallization involving multiple crystal morphological forms

A population balance model for predicting the dynamic evolution of crystal shape distribution is further developed to simulate crystallization processes in which multiple crystal morphological forms co-exist and transitions between them can take place. The new model is applied to derive the optimal temperature and supersaturation profiles leading to the desired crystal shape distribution in cooling crystallization. Since tracking an optimum temperature or supersaturation trajectory can be easily implemented by manipulating the coolant flowrate in the reactor jacket, the proposed methodology provides a feasible closed-loop mechanism for crystal shape tailoring and control. The methodology is demonstrated by applying it to a case study of seeded cooling crystallization of potash alum. © 2009 American Institute of Chemical Engineers AIChE J, 2009

[1]  Cai Y. Ma,et al.  A method for analyzing on-line video images of crystallization at high-solid concentrations , 2008 .

[2]  B. Shekunov,et al.  The influence of synchrotron radiation-induced strain on the growth and dissolution of brittle and ductile materials , 1997 .

[3]  James B. Rawlings,et al.  Model-based object recognition to measure crystal size and shape distributions from in situ video images , 2007 .

[4]  James B. Rawlings,et al.  Particle-shape monitoring and control in crystallization processes , 2001 .

[5]  B. Shekunov,et al.  Long and short period growth rate variations in potash alum crystals , 1996 .

[6]  S. Katz,et al.  Some problems in particle technology: A statistical mechanical formulation , 1964 .

[7]  Michael F. Doherty,et al.  Simultaneous prediction of crystal shape and size for solution crystallization , 2004 .

[8]  François Puel,et al.  Simulation and analysis of industrial crystallization processes through multidimensional population balance equations. Part 1: a resolution algorithm based on the method of classes , 2003 .

[9]  M. Doherty,et al.  A dynamic model for evolution of crystal shape , 2004 .

[10]  Shamsul Qamar,et al.  A comparative study of high resolution schemes for solving population balances in crystallization , 2006, Comput. Chem. Eng..

[11]  Panagiotis D. Christofides,et al.  Predictive control of particle size distribution in particulate processes , 2006 .

[12]  Michael F. Doherty,et al.  Manipulation of crystal shape by cycles of growth and dissolution , 2007 .

[13]  John Garside,et al.  Industrial crystallization from solution , 1985 .

[14]  X. Wang,et al.  Morphological Population Balance for Modeling Crystal Growth in Face Directions , 2008 .

[15]  René David,et al.  Crystallization and precipitation engineering—II. A chemical reaction engineering approach to salicyclic acid precipitation: Modelling of batch kinetics and application to continuous operation , 1988 .

[16]  R. Braatz,et al.  High resolution algorithms for multidimensional population balance equations , 2004 .

[17]  M. Mazzotti,et al.  In Situ Monitoring and Modeling of the Solvent-Mediated Polymorphic Transformation of l-Glutamic Acid , 2006 .

[18]  Kevin J. Roberts,et al.  Multi-scale segmentation image analysis for the in-process monitoring of particle shape with batch crystallisers , 2005 .

[19]  R. D. Braatz,et al.  Run-to-run control of multidimensional crystal size distribution in a batch crystallizer , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[20]  D. L. Ma,et al.  High-Resolution Simulation of Multidimensional Crystal Growth , 2002 .

[21]  Kevin J. Roberts,et al.  Integration of crystal morphology modeling and on‐line shape measurement , 2006 .

[22]  M J Wilkinson,et al.  Non-invasive video imaging for interrogating pharmaceutical crystallization processes , 2000, Microscopy and Microanalysis.

[23]  Marjatta Louhi-Kultanen,et al.  Crystal Shape Control by Manipulating Supersaturation in Batch Cooling Crystallization , 2006 .

[24]  J. Urai,et al.  Experimental study of polycrystal growth from an advecting supersaturated fluid in a model fracture , 2006 .

[25]  James B. Rawlings,et al.  An algorithm for analyzing noisy, in situ images of high-aspect-ratio crystals to monitor particle size distribution , 2006 .

[26]  François Puel,et al.  Simulation and analysis of industrial crystallization processes through multidimensional population balance equations. Part 2: a study of semi-batch crystallization , 2003 .

[27]  Horst A. Eiselt,et al.  A computational study of redundancy in randomly generated polytopes , 1993, Computing.

[28]  Michael F. Doherty,et al.  Faceted crystal shape evolution during dissolution or growth , 2007 .

[29]  Prashant Mhaskar,et al.  Predictive control of crystal size distribution in protein crystallization , 2005, Nanotechnology.

[30]  J. Prywer Three-dimensional model of faces disappearance in crystal habit , 1995 .

[31]  B. Glennon,et al.  Characterizing the metastable zone width and solubility curve using lasentec FBRM and PVM , 2002 .

[32]  X. Wang,et al.  Crystal Growth Rate Dispersion Modeling Using Morphological Population Balance , 2008 .

[33]  Kevin J. Roberts,et al.  Classifying organic crystals via in-process image analysis and the use of monitoring charts to follow polymorphic and morphological changes , 2005 .

[34]  J. Prywer Kinetic and geometric determination of the growth morphology of bulk crystals: Recent developments , 2005 .

[35]  B. J. McCoy A New Population Balance Model for Crystal Size Distributions: Reversible, Size-Dependent Growth and Dissolution. , 2001, Journal of colloid and interface science.

[36]  Kevin J. Roberts,et al.  Crystal growth measurement using 2D and 3D imaging and the perspectives for shape control , 2008 .

[37]  M. Louhi-Kultanen,et al.  In-line image analysis on the effects of additives in batch cooling crystallization , 2006 .

[38]  D. L. Ma,et al.  Optimal control and simulation of multidimensional crystallization processes , 2002 .

[39]  Kevin J. Roberts,et al.  Real-Time Measurement of the Growth Rates of Individual Crystal Facets Using Imaging and Image Analysis: A Feasibility Study on Needle-shaped Crystals of L-Glutamic Acid , 2007 .

[40]  Reginald B. H. Tan,et al.  Recent Advances in Crystallization control: An Industrial Perspective , 2007 .

[41]  Kevin J. Roberts,et al.  Real-time product morphology monitoring in crystallization using imaging technique , 2005 .

[42]  Michael F. Doherty,et al.  Shape evolution of 3‐dimensional faceted crystals , 2006 .

[43]  J. Klein,et al.  Crystallization and precipitation engineering—I. An efficient method for solving population balance in crystallization with agglomeration , 1988 .

[44]  Alan W. Mahoney,et al.  Population balance modeling. Promise for the future , 2002 .

[45]  M. Matsuoka Morphology control in melt crystallization , 1993 .