jPhase: an object-oriented tool for modeling phase-type distributions

Phase-Type distributions are a powerful tool in stochastic modeling of real systems. In this paper, we describe an object-oriented tool used to represent and manipulate these distributions as computational objects. It allows the computation of multiple closure properties that can be used when modeling large systems with multiple interactions. The tool also includes procedures for fitting the parameter of a distribution from a data set and capabilities for generating random numbers from a specified distribution. This framework is built in a flexible and expandable way, and, therefore, it is not limited to the algorithms provided.

[1]  Alma Riska,et al.  Efficient fitting of long-tailed data sets into hyperexponential distributions , 2002, Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE.

[2]  M. Telek,et al.  Moment Bounds for Acyclic Discrete and Continuous Phase Type Distributions of Second Order , 2002 .

[3]  M. A. Johnson,et al.  Matching moments to phase distributions: density function shapes , 1990 .

[4]  Mor Harchol-Balter,et al.  A Closed-Form Solution for Mapping General Distributions to Minimal PH Distributions , 2003, Computer Performance Evaluation / TOOLS.

[5]  A. Horváth,et al.  Approximating heavy tailed behaviour with Phase type distributions , 2000 .

[6]  Peter Buchholz,et al.  A novel approach for fitting probability distributions to real trace data with the EM algorithm , 2005, 2005 International Conference on Dependable Systems and Networks (DSN'05).

[7]  Kishor S. Trivedi,et al.  Techniques for System Dependability Evaluation , 2000 .

[8]  Averill M. Law,et al.  Simulation Modeling and Analysis , 1982 .

[9]  Marcel F. Neuts,et al.  Matrix-Geometric Solutions in Stochastic Models , 1981 .

[10]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[11]  A. Cumani On the canonical representation of homogeneous markov processes modelling failure - time distributions , 1982 .

[12]  D. Cox A use of complex probabilities in the theory of stochastic processes , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[13]  Gianfranco Ciardo,et al.  SMART: stochastic model-checking analyzer for reliability and timing , 2002, Proceedings International Conference on Dependable Systems and Networks.

[14]  Paul H. Zipkin,et al.  Foundations of Inventory Management , 2000 .

[15]  John A. Buzacott,et al.  Stochastic models of manufacturing systems , 1993 .

[16]  Germán Riaño,et al.  Transient behavior of stochastic networks :application to production planning with load-dependent lead times , 2002 .

[17]  A. Horváth,et al.  Matching Three Moments with Minimal Acyclic Phase Type Distributions , 2005 .

[18]  A. David,et al.  The least variable phase type distribution is Erlang , 1987 .

[19]  Teofilo F. Gonzalez,et al.  An Efficient Algorithm for the Kolmogorov-Smirnov and Lilliefors Tests , 1977, TOMS.

[20]  Ren Asmussen,et al.  Fitting Phase-type Distributions via the EM Algorithm , 1996 .

[21]  Michael A. Johnson,et al.  Matching moments to phase distri-butions: mixtures of Erlang distribution of common order , 1989 .

[22]  Mor Harchol-Balter,et al.  Necessary and Sufficient Conditions for Representing General Distributions by Coxians , 2003, Computer Performance Evaluation / TOOLS.

[23]  Yuguang Fang,et al.  Teletraffic analysis and mobility modeling of PCS networks , 1999, IEEE Trans. Commun..

[24]  Marcel F. Neuts,et al.  Generating random variates from a distribution of phase type , 1981, WSC '81.

[25]  Mor Harchol-Balter,et al.  Closed form solutions for mapping general distributions to quasi-minimal PH distributions , 2006, Perform. Evaluation.

[26]  SadreRamin,et al.  Fitting world-wide web request traces with the EM-algorithm , 2003 .

[27]  Ramin Sadre,et al.  Fitting World Wide Web request traces with the EM-algorithim , 2001, SPIE ITCom.

[28]  Peter van der Linden Just Java , 1996, notThenot SunSoft Press Java series.

[29]  Vaidyanathan Ramaswami,et al.  Introduction to Matrix Analytic Methods in Stochastic Modeling , 1999, ASA-SIAM Series on Statistics and Applied Mathematics.

[30]  Christian Gourieroux,et al.  Statistics and econometric models , 1995 .

[31]  Alma Riska,et al.  An EM-based technique for approximating long-tailed data sets with PH distributions , 2004, Perform. Evaluation.

[32]  A. Bobbioa,et al.  Acyclic discrete phase type distributions: properties and a parameter estimation algorithm , 2003 .

[33]  Germán Riaño,et al.  jMarkov: an object-oriented framework for modeling and analyzing Markov chains and QBDs , 2006, SMCtools '06.