Thermal alteration of asteroids: evidence from meteorites
暂无分享,去创建一个
[1] JOHN S. Lewis,et al. Chemistry of Primitive Solar Material , 1976 .
[2] P. Buseck,et al. Phyllosilicates in the Mokoia CV carbonaceous chondrite: Evidence for aqueous alteration in an oxidizing environment , 1990 .
[3] R. Clayton,et al. Aqueous alteration of the Bali CV3 chondrite: evidence from mineralogy, mineral chemistry, and oxygen isotopic compositions. , 1994, Geochimica et cosmochimica acta.
[4] D. Garrison,et al. 39Ar40Ar age of the Ibitira eucrite and constraints on the time of pyroxene equilibration , 1995 .
[5] M. Michel-Lévy. La matrice noire et blanche de la chondrite de Tieschitz (H3) , 1976 .
[6] M. Zolensky,et al. Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites , 1993 .
[7] E. Scott. Geochemical relationships between some pallasites and iron meteorites , 1977, Mineralogical Magazine.
[8] B. Fegley,et al. High-temperature condensation of iron-rich olivine in the solar nebula , 1990 .
[9] M. Lipschutz,et al. Labile Trace Elements in Some Antarctic Carbonaceous Chondrites: Antarctic and Non-Antarctic Meteorite Comparisons , 1989 .
[10] L. Grossman,et al. Alteration of Al-rich inclusions inside amoeboid olivine aggregates in the Allende meteorite , 1987 .
[11] Richard P. Binzel,et al. Impact excavation on Asteroid 4 Vesta: Hubble Space Telescope results , 1997 .
[12] M. Gaffey,et al. Geologic Mapping of Vesta from 1994 Hubble Space Telescope Images , 1995 .
[13] A. Cameron,et al. The first ten million years in the solar nebula , 1995 .
[14] J. Akai. T-T-T diagram of serpentine and saponite, and estimation ofmetamorphic heating degree of Antarctic carbonaceous chondrites , 1992 .
[15] H. Takeda,et al. Degree of equilibration of eucritic pyroxenes and thermal metamorphism of the earliest planetary crust , 1991 .
[16] J. Akai. Incompletely transformed serpentine-type phyllosilicates in the matrix of Antarctic CM chondrites , 1988 .
[17] M. Zolensky,et al. Carbide-magnetite assemblages in type-3 ordinary chondrites , 1997 .
[18] J. Bridges,et al. Elemental redistribution in Tieschitz and the origin of white matrix , 1998 .
[19] R. Clayton,et al. A New Brachinite and Petrogenesis of the Group , 1996 .
[20] T. Kojima,et al. Indicators of aqueous alteration and thermal metamorphism on the CV parent body: Microtextures of a dark inclusion from Allende , 1996 .
[21] G. Lugmair,et al. Live Iron-60 in the Early Solar System , 1993, Science.
[22] Michael E. Zolensky,et al. Correlated alteration effects in CM carbonaceous chondrites , 1996 .
[23] E. Scott,et al. 53Mn-53Cr dating of fayalite formation in the CV3 chondrite Mokoia: evidence for asteroidal alteration. , 1998, Science.
[24] M. Zolensky,et al. Radiogenic 53Cr in Kaidun Carbonates: Evidence for Very Early Aqueous Activity , 1999 .
[25] K. Keil,et al. Igneous history of the aubrite parent asteroid - Evidence from the Norton County enstatite achondrite , 1988 .
[26] A. Rubin,et al. Abee and related EH chondrite impact-melt breccias , 1997 .
[27] A. Rubin. Sinoite (Si2N2O): Crystallization from EL chondrite impact melts , 1997 .
[28] K. Keil,et al. Early aqueous alteration, explosive disruption, and reprocessing of asteroids , 1999 .
[29] G. Wasserburg,et al. Demonstration of 26 Mg excess in Allende and evidence for 26 Al , 1976 .
[30] P. Buseck,et al. Aqueous alteration in the Kaba CV3 carbonaceous chondrite , 1989 .
[31] M. Zolensky,et al. Asteroidal water within fluid inclusion-bearing halite in an H5 chondrite, Monahans (1998) , 1999, Science.
[32] D. Stöffler,et al. Accretionary dust mantles in CM chondrites: Evidence for solar nebula processes , 1992 .
[33] G. Wasserburg,et al. Evidence for Widespread 26Al in the Solar Nebula and Constraints for Nebula Time Scales , 1996, Science.
[34] T V Johnson,et al. Asteroid Vesta: Spectral Reflectivity and Compositional Implications , 1970, Science.
[35] A. Bischoff,et al. Carbonates in CI chondrites: clues to parent body evolution. , 1996, Geochimica et cosmochimica acta.
[36] Y. Morishita,et al. Aluminum-26 in Two Ferromagnesian Chondrules from a Highly Unequilibrated Ordinary Chondrite: Evidence of a Short Period of Chondrule Formation , 1999 .
[37] G. Kallemeyn,et al. Explosive volcanism and the graphite-oxygen fugacity buffer on the parent asteroid(s) of the ureilite meteorites , 1992 .
[38] Michael J. Gaffey,et al. Surface Lithologic Heterogeneity of Asteroid 4 Vesta , 1997 .
[39] H. Haack,et al. Effects of regolith/megaregolith insulation on the cooling histories of differentiated asteroids , 1990 .
[40] Clark R. Chapman,et al. S-Type Asteroids, Ordinary Chondrites, and Space Weathering: The Evidence from Galileo's Fly-bys of Gaspra and Ida , 1996 .
[41] H. Palme,et al. FeO-rich rims and veins in Allende forsterite: Evidence for high temperature condensation at oxidizing conditions , 1990 .
[42] M. Zolensky,et al. Secondary calcium‐iron‐rich minerals in the Bali‐like and Allende‐like oxidized CV3 chondrites and Allende dark inclusions , 1998 .
[43] K. Keil,et al. Shock metamorphism of ordinary chondrites , 1991 .
[44] Makoto Kimura,et al. Anhydrous alteration of Allende chondrules in the solar nebura II: Alkali-Ca exchange reactions and formation of nepheline,sodalite and Ca-rich phases in chondrules , 1995 .
[45] D. Mittlefehldt,et al. Chapter 4. NON-CHONDRITIC METEORITES FROM ASTEROIDAL BODIES , 1998 .
[46] E. Anders,et al. Meteorites and the Early Solar System , 1971 .
[47] E. Stolper. Experimental petrology of eucritic meteorites , 1977 .
[48] S. Richardson. VEIN FORMATION IN THE C1 CARBONACEOUS CHONDRITES , 1978 .
[49] A. Meibom,et al. Evidence for the insignificance of ordinary chondritic material in the asteroid belt , 1999 .
[50] E. Takahashi. Melting of a Yamato L3 chondorite (Y-74191) up to 30 kbar , 1983 .
[51] P. Cassen,et al. Theoretical, observational, and isotopic estimates of the lifetime of the solar nebula , 1994 .
[52] R. Binzel,et al. Chips off of Asteroid 4 Vesta: Evidence for the Parent Body of Basaltic Achondrite Meteorites , 1993, Science.
[53] Robert N. Clayton. Oxygen Isotopes in Meteorites , 1993 .
[54] A. Rubin,et al. Equilibration temperatures of EL chondrites: A major downward revision in the ferrosilite contents of enstatite , 1994 .
[55] Gary E. Lofgren,et al. Partial melting of the Indarch (EH4) meteorite: A textural, chemical, and phase relations view of melting and melt migration , 1999 .
[56] Timothy J. McCoy,et al. Non-chondritic meteorites from asteroidal bodies , 1998 .
[57] E. Scott,et al. Shock metamorphism of enstatite chondrites , 1997 .
[58] G. J. Taylor,et al. Metamorphic history of the eucritic crust of 4 Vesta , 1995 .
[59] Lionel Wilson,et al. Ascent and eruption of basaltic magma on the earth and moon , 1981 .
[60] Y. Nakamuta,et al. Sodic plagioclase thermometry of type 6 ordinary chondrites: Implications for the thermal histories of parent bodies , 1999 .
[61] M. Zolensky,et al. New petrographic and trace element data on thermally metamorphosed carbonaceous chondrites , 1999 .
[62] C. Allègre,et al. 53Mn-53Cr evolution of the early solar system , 1999 .
[63] K. Keil,et al. High-temperature mass spectrometric degassing of enstatite chondrites: implications for pyroclastic volcanism on the aubrite parent body. , 1991 .
[64] K. Keil,et al. Volatiles in unequilibrated ordinary chondrites: Abundances, sources and implications for explosive volcanism on differentiated asteroids , 1995 .
[65] T. E. Bunch,et al. Carbonaceous chondrites. II - Carbonaceous chondrite phyllosilicates and light element geochemistry as indicators of parent body processes and surface conditions , 1980 .
[66] P. Buseck,et al. Calcic Micas in the Allende Meteorite: Evidence for Hydration Reactions in the Early Solar Nebula , 1991, Science.
[67] V. V. Biryukov,et al. Mineralogy, petrography, bulk chemical, iodine‐xenon, and oxygen‐isotopic compositions of dark inclusions in the reduced CV3 chondrite Efremovka , 1999 .
[68] M. Miyamoto,et al. Hydrothermal experiments on alteration of Ca-Al-rich inclusions (CAIs) in carbonaceous chondrites: implication for aqueous alteration in parent asteroids , 1998 .
[69] M. Prinz,et al. Fayalitic olivine in CV3 chondrite matrix and dark inclusions: A nebular origin , 1998 .
[70] S. Sahijpal,et al. Ion microprobe studies of Efremovka CAIs: II. Potassium isotope composition and 41Ca in the early Solar System , 1996 .
[71] John A. Wood,et al. A chemical-petrologic classification for the chondritic meteorites. , 1967 .
[72] M. Zolensky,et al. Mineralogical and chemical modification of components in CV3 chondrites: Nebular or asteroidal processing? , 1995 .
[73] J. Armstrong,et al. Constraints on the thermal history of the Allende parent body as derived from olivine-spinel thermometry and Fe/Mg interdiffusion in olivine , 1994 .
[74] D. J. Barber,et al. The microstructure of Semarkona and Bishunpur , 1989 .
[75] Martin R. Lee,et al. Aqueous alteration in the matrix of the Vigarano (CV3) carbonaceous chondrite , 1996 .
[76] C. Goodrich. Ureilites - A critical review , 1992 .
[77] R. Housley,et al. On the alteration of Allende chondrules and the formation of matrix , 1983 .
[78] E. Anders,et al. Organic compounds in meteorites and their origins , 1981 .
[79] G. Lugmair,et al. Early solar system timescales according to 53Mn-53Cr systematics , 1998 .
[80] Michael J. Gaffey,et al. Asteroid 6 Hebe: The probable parent body of the H‐type ordinary chondrites and the IIE iron meteorites , 1998 .
[81] P. Buseck,et al. Indicators of aqueous alteration in CM carbonaceous chondrites: Microtextures of a layered mineral containing Fe, S, O and Ni , 1985 .
[82] M. Zolensky,et al. Chemical, thermal and impact processing of asteroids , 1989 .
[83] Martin R. Lee. The Petrography, Mineralogy and Origins of Calcium Sulphate within the Cold Bokkeveld CM Carbonaceous Chondrite , 1993 .
[84] M. Kimura,et al. Anhydrous alteration of Allende chondrules in the solar nebura I: Description and alteration of chondrules with known oxygen-isotopic compositions , 1995 .
[85] Lionel Wilson,et al. A comparison of volcanic eruption processes on Earth, Moon, Mars, Io and Venus , 1983, Nature.
[86] K. Keil,et al. Consequences of explosive eruptions on small Solar System bodies: the case of the missing basalts on the aubrite parent body , 1991 .
[87] R. T. Dodd. Meteorites. A petrologic-chemical synthesis. , 1981 .
[88] F. Podosek,et al. Short-lived radionuclides in the solar nebula , 1997 .
[89] E. Olsen,et al. Equilibration temperatures of the ordinary chondrites: A new evaluation , 1984 .
[90] R. Clayton,et al. The oxygen isotope record in Murchison and other carbonaceous chondrites , 1984 .
[91] G. Kurat. The Formation of Chondrules and Chondrites and Some Observations on Chondrules from the Tieschitz Meteorite , 1969 .
[92] J. Birck,et al. Manganese—chromium isotope systematics and the development of the early Solar System , 1988, Nature.
[93] M. Kimura,et al. Hydrous and anhydrous alterations of chondrules in Kaba and Mokoia CV chondrites , 1998 .
[94] Akai Junji. Mineralogical evidence of heating events in Antarctic carbonaceous chondrites, Y-86720 and Y-82162 , 1990 .
[95] John H. Jones,et al. Origin of the earth , 1990 .
[96] G. Lugmair,et al. Isotopic evidence for the Cretaceous-Tertiary impactor and its type. , 1998, Science.
[97] K. Keil,et al. The melting of asteroidal-sized bodies by unipolar dynamo induction from a primordial T Tauri sun , 1970 .
[98] R. Clayton,et al. A petrologic and isotopic study of lodranites: Evidence for early formation as partial melt residues from heterogeneous precursors , 1997 .
[99] K. Keil. Enstatite meteorites and their parent bodies , 1989 .
[100] Kevin Righter,et al. A magma ocean on Vesta: Core formation and petrogenesis of eucrites and diogenites , 1997 .
[101] H. Palme,et al. Fayalite-rich rims, veins, and halos around and in forsteritic olivines in CAIs and chondrules in carbonaceous chondrites: Types, compositional profiles and constraints of their formation , 1988 .
[102] K. Keil,et al. The matrices of unequilibrated ordinary chondrites: Implications for the origin and history of chondrites , 1981 .
[103] H. Haack,et al. Thermal and shock history of mesosiderites and their large parent asteroid , 1996 .
[104] Ikeda,et al. Petrology of the Yamato-8449 CR chondrite , 1995 .
[105] P. Buseck,et al. FAYALITE IN THE KABA AND MOKOIA CARBONACEOUS CHONDRITES , 1995 .
[106] W. Hartmann,et al. Asteroids - The big picture , 1989 .
[107] E. Pernicka,et al. Qingzhen and Yamato-691: A tentative alphabet for the EH chondrites , 1988 .
[108] A. Bischoff,et al. Aqueous alteration of carbonaceous chondrites: Evidence for preaccretionary alteration—A review , 1998 .
[109] D. Sears,et al. The classification and complex thermal history of the enstatite chondrites , 1995 .
[110] K. Keil,et al. Explosive volcanism and the compositions of cores of differentiated asteroids , 1993 .
[111] K. Keil,et al. Composition of metal in aubrites: Constraints on core formation , 1993 .
[112] K. Keil,et al. A petrologic study of the IAB iron meteorites: Constraints on the formation of the IAB‐Winonaite parent body , 2000 .
[113] H. McSween,et al. Oxidation during metamorphism of the ordinary chondrites , 1993 .
[114] P. C. Hess,et al. Intensive parameters of enstatite chondrite metamorphism , 1989 .
[115] A. Brearley. Phyllosilicates in the matrix of the unique carbonaceous chondrite Lewis Cliff 85332 and possible implications for the aqueous alteration of CI chondrites , 1997 .
[116] H. McSween,et al. Pyroxene thermobarometry in LL-group chondrites and implications for parent body metamorphism , 1989 .
[117] G. J. Taylor. Core formation in asteroids , 1992 .
[118] L. Grossman,et al. Accretionary rims on inclusions in the Allende meteorite , 1985 .
[119] J. A. Peck,et al. The origin of ferrous zoning in Allende chondrule olivines , 1986 .
[120] R. Clayton,et al. Oxygen isotope studies of carbonaceous chondrites , 1999 .
[121] E. Anders. Origin, age, and composition of meteorites , 1964 .
[122] G. Wasserburg,et al. An isotopic and petrologic study of calcium-aluminum-rich inclusions from CO3 meteorites , 1998 .
[123] H. Palme,et al. Allende Xenolith AF: Undisturbed Record of Condensation and Aggregation of Matter in the Solar Nebula , 1989 .
[124] J. Lunine,et al. Protostars and planets III , 1993 .
[125] Lunar,et al. Chondrules and their origins , 1983 .
[126] H. Newsom,et al. Igneous activity in the early solar system. , 1988 .
[127] Ernst K. Zinner,et al. Astrophysical Implications of the Laboratory Study of Presolar Materials , 1997 .
[128] K. Yanai,et al. Yamato-86720: A CM carbonaceous chondrite having experienced extensive aqueous alteration and thermal metamorphism , 1989 .
[129] H. Urey. THE COSMIC ABUNDANCES OF POTASSIUM, URANIUM, AND THORIUM AND THE HEAT BALANCES OF THE EARTH, THE MOON, AND MARS. , 1955, Proceedings of the National Academy of Sciences of the United States of America.
[130] G. Wasserburg,et al. Correction [to “Demonstration of 26Mg excess in Allende and evidence for 26Al”] , 1976 .
[131] L. Grossman,et al. Early chemical history of the solar system , 1974 .
[132] A. Brearley,et al. Disordered biopyriboles, amphibole, and talc in the Allende meteorite: products of nebular or parent body aqueous alteration? , 1997, Science.
[133] E. Scott,et al. Classification and properties of iron meteorites , 1975 .
[134] H. Takeda,et al. A model for the origin of basaltic achondrites based on the Yamato 7308 Howardite , 1985 .
[135] D. Sears,et al. The thermometry of enstatite chondrites: A brief review and update , 1996 .
[136] D. Sears,et al. The type three ordinary chondrities: A review , 1987 .
[137] H. McSween. Petrographic variations among carbonaceous chondrites of the Vigarano type , 1977 .
[138] A. Davis,et al. The distribution of aluminum-26 in the early Solar System—A reappraisal , 1995 .
[139] G. J. Taylor,et al. Global Crustal Metamorphism of the Eucrite Parent Body , 1996 .
[140] E. Scott. Origin of anomalous iron meteorites , 1979, Mineralogical Magazine.
[141] John F. Kerridge,et al. Meteorites and the early solar system , 1988 .
[142] A. D. Romig,et al. The Shallowater aubrite: Evidence for origin by planetesimal impacts , 1989 .
[143] R. Clayton,et al. A petrologic, chemical, and isotopic study of Monument Draw and comparison with other acapulcoites: Evidence for formation by incipient partial melting , 1996 .
[144] M. Zolensky,et al. Origin of fayalitic olivine rims and lath‐shaped matrix olivine in the CV3 chondrite Allende and its dark inclusions , 1997 .
[145] H. Takeda,et al. Unusual dark clasts in the Vigarano CV3 carbonaceous chondrite: Record of parent body process , 1993 .
[146] L. Fuchs. Occurrence of wollastonite, rhnite, and andradite in the Allende meteorite. , 1971 .
[147] G. J. Taylor,et al. Origin of ureilite meteorites and implications for planetary accretion , 1993 .
[148] G. J. Taylor,et al. Asteroid differentiation - Pyroclastic volcanism to magma oceans , 1993 .
[149] I. Hutcheon,et al. Radiogenic 53Cr* in Orgueil Carbonates: Chronology of Aqueous Activity on the CI Parent Body , 1996 .
[150] E. Anders,et al. Chemical Evolution of the Carbonaceous Chondrites , 1962 .
[151] Dale P. Cruikshank,et al. Reflectance spectroscopy and asteroid surface mineralogy , 1989 .
[152] M. Zolensky. Hydrothermal alteration of CM carbonaceous chondrites; implications of the identification of tochilinite as one type of meteoritic PCP , 1984 .
[153] D. Mittlefehldt. Volatile degassing of basaltic achondrite parent bodies Evidence from alkali elements and phosphorus , 1987 .
[154] M. Zolensky,et al. Progressive alteration in CV3 chondrites: More evidence for asteroidal alteration , 1998 .
[155] H. Takeda. Mineralogical records of early planetary processes on the howardite, eucrite, diogenite parent body with reference to Vesta , 1997 .
[156] K. Keil,et al. PARTIAL MELTING AND MELT MIGRATION IN THE ACAPULCOITE-LODRANITE PARENT BODY , 1997 .
[157] I. Hutcheon,et al. Evidence from the Semarkona ordinary chondrite for 26A1 heating of small planets , 1989, Nature.
[158] L. Taylor,et al. Vesta as the howardite, eucrite and diogenite parent body: Implications for the size of a core and for large‐scale differentiation , 1997 .
[159] K. Keil,et al. A petrologic and isotopic study of winonaites: Evidence for early partial melting, brecciation, and metamorphism , 1998 .
[160] E. Scott,et al. Constraints on the role of impact heating and melting in asteroids , 1997 .
[161] John H. Jones,et al. Experimental partial melting of the Allende (CV) and Murchison (CM) chondrites and the origin of asteroidal basalts , 1993 .
[162] K. Keil,et al. The fate of pyroclasts produced in explosive eruptions on the asteroid 4 Vesta , 1997 .
[163] Evolutionary time scales for circumstellar disks associated with intermediate- and solar-type stars , 1993 .
[164] K. Keil,et al. Volcanic eruptions and intrusions on the asteroid 4 Vesta , 1996 .
[165] K. Keil. Mineralogical and chemical relationships among enstatite chondrites , 1968 .
[166] K. Keil,et al. Clast sizes of ejecta from explosive eruptions on asteroids: implications for the fate of the basaltic products of differentiation , 1996 .
[167] J F Kerridge,et al. Magnetite in CI Carbonaceous Meteorites: Origin by Aqueous Activity on a Planetesimal Surface , 1979, Science.
[168] A. Brearley,et al. Bleached chondrules: Evidence for widespread aqueous processes on the parent asteroids of ordinary chondrites , 2000 .
[169] M. Prinz,et al. Petrologic study of the Belgica 7904 carbonaceous chondrite: Hydrous alteration, oxygen isotopes, and relationship to CM and CI chondrites , 1993 .
[170] G. Lugmair,et al. 60Fe in eucrites , 1993 .