Thermal alteration of asteroids: evidence from meteorites

Abstract The world's meteorite collections contain meteorites from at least ∼27 primitive, chondritic and ∼108 partially or totally melted asteroids. Detailed studies of these meteorites have shown that all of their asteroidal parent bodies have been thermally altered by internal heating to some degree. These alterations range from low temperature, aqueous processes (∼0 to 1250°C) residues, to partial and complete melting, differentiation and fractional crystallization of asteroids (∼1150 to ⪢1250°C). The most likely heat source was the decay of short-lived radionuclides, notably 26 Al . These thermal alterations took place penecontemporaneously on all asteroids of which we have samples, and in the first few Ma of solar system history. The asteroid 4 Vesta, the likely parent body of the HED meteorites, is a highly differentiated object, may have a metal core, and can be viewed as the smallest of the terrestrial planets. It accreted, was heated, was partially to completely melted, and formed an extrusive basaltic crust, all within a few Ma of formation of CAIs and the dawn of the solar system.

[1]  JOHN S. Lewis,et al.  Chemistry of Primitive Solar Material , 1976 .

[2]  P. Buseck,et al.  Phyllosilicates in the Mokoia CV carbonaceous chondrite: Evidence for aqueous alteration in an oxidizing environment , 1990 .

[3]  R. Clayton,et al.  Aqueous alteration of the Bali CV3 chondrite: evidence from mineralogy, mineral chemistry, and oxygen isotopic compositions. , 1994, Geochimica et cosmochimica acta.

[4]  D. Garrison,et al.  39Ar40Ar age of the Ibitira eucrite and constraints on the time of pyroxene equilibration , 1995 .

[5]  M. Michel-Lévy La matrice noire et blanche de la chondrite de Tieschitz (H3) , 1976 .

[6]  M. Zolensky,et al.  Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites , 1993 .

[7]  E. Scott Geochemical relationships between some pallasites and iron meteorites , 1977, Mineralogical Magazine.

[8]  B. Fegley,et al.  High-temperature condensation of iron-rich olivine in the solar nebula , 1990 .

[9]  M. Lipschutz,et al.  Labile Trace Elements in Some Antarctic Carbonaceous Chondrites: Antarctic and Non-Antarctic Meteorite Comparisons , 1989 .

[10]  L. Grossman,et al.  Alteration of Al-rich inclusions inside amoeboid olivine aggregates in the Allende meteorite , 1987 .

[11]  Richard P. Binzel,et al.  Impact excavation on Asteroid 4 Vesta: Hubble Space Telescope results , 1997 .

[12]  M. Gaffey,et al.  Geologic Mapping of Vesta from 1994 Hubble Space Telescope Images , 1995 .

[13]  A. Cameron,et al.  The first ten million years in the solar nebula , 1995 .

[14]  J. Akai T-T-T diagram of serpentine and saponite, and estimation ofmetamorphic heating degree of Antarctic carbonaceous chondrites , 1992 .

[15]  H. Takeda,et al.  Degree of equilibration of eucritic pyroxenes and thermal metamorphism of the earliest planetary crust , 1991 .

[16]  J. Akai Incompletely transformed serpentine-type phyllosilicates in the matrix of Antarctic CM chondrites , 1988 .

[17]  M. Zolensky,et al.  Carbide-magnetite assemblages in type-3 ordinary chondrites , 1997 .

[18]  J. Bridges,et al.  Elemental redistribution in Tieschitz and the origin of white matrix , 1998 .

[19]  R. Clayton,et al.  A New Brachinite and Petrogenesis of the Group , 1996 .

[20]  T. Kojima,et al.  Indicators of aqueous alteration and thermal metamorphism on the CV parent body: Microtextures of a dark inclusion from Allende , 1996 .

[21]  G. Lugmair,et al.  Live Iron-60 in the Early Solar System , 1993, Science.

[22]  Michael E. Zolensky,et al.  Correlated alteration effects in CM carbonaceous chondrites , 1996 .

[23]  E. Scott,et al.  53Mn-53Cr dating of fayalite formation in the CV3 chondrite Mokoia: evidence for asteroidal alteration. , 1998, Science.

[24]  M. Zolensky,et al.  Radiogenic 53Cr in Kaidun Carbonates: Evidence for Very Early Aqueous Activity , 1999 .

[25]  K. Keil,et al.  Igneous history of the aubrite parent asteroid - Evidence from the Norton County enstatite achondrite , 1988 .

[26]  A. Rubin,et al.  Abee and related EH chondrite impact-melt breccias , 1997 .

[27]  A. Rubin Sinoite (Si2N2O): Crystallization from EL chondrite impact melts , 1997 .

[28]  K. Keil,et al.  Early aqueous alteration, explosive disruption, and reprocessing of asteroids , 1999 .

[29]  G. Wasserburg,et al.  Demonstration of 26 Mg excess in Allende and evidence for 26 Al , 1976 .

[30]  P. Buseck,et al.  Aqueous alteration in the Kaba CV3 carbonaceous chondrite , 1989 .

[31]  M. Zolensky,et al.  Asteroidal water within fluid inclusion-bearing halite in an H5 chondrite, Monahans (1998) , 1999, Science.

[32]  D. Stöffler,et al.  Accretionary dust mantles in CM chondrites: Evidence for solar nebula processes , 1992 .

[33]  G. Wasserburg,et al.  Evidence for Widespread 26Al in the Solar Nebula and Constraints for Nebula Time Scales , 1996, Science.

[34]  T V Johnson,et al.  Asteroid Vesta: Spectral Reflectivity and Compositional Implications , 1970, Science.

[35]  A. Bischoff,et al.  Carbonates in CI chondrites: clues to parent body evolution. , 1996, Geochimica et cosmochimica acta.

[36]  Y. Morishita,et al.  Aluminum-26 in Two Ferromagnesian Chondrules from a Highly Unequilibrated Ordinary Chondrite: Evidence of a Short Period of Chondrule Formation , 1999 .

[37]  G. Kallemeyn,et al.  Explosive volcanism and the graphite-oxygen fugacity buffer on the parent asteroid(s) of the ureilite meteorites , 1992 .

[38]  Michael J. Gaffey,et al.  Surface Lithologic Heterogeneity of Asteroid 4 Vesta , 1997 .

[39]  H. Haack,et al.  Effects of regolith/megaregolith insulation on the cooling histories of differentiated asteroids , 1990 .

[40]  Clark R. Chapman,et al.  S-Type Asteroids, Ordinary Chondrites, and Space Weathering: The Evidence from Galileo's Fly-bys of Gaspra and Ida , 1996 .

[41]  H. Palme,et al.  FeO-rich rims and veins in Allende forsterite: Evidence for high temperature condensation at oxidizing conditions , 1990 .

[42]  M. Zolensky,et al.  Secondary calcium‐iron‐rich minerals in the Bali‐like and Allende‐like oxidized CV3 chondrites and Allende dark inclusions , 1998 .

[43]  K. Keil,et al.  Shock metamorphism of ordinary chondrites , 1991 .

[44]  Makoto Kimura,et al.  Anhydrous alteration of Allende chondrules in the solar nebura II: Alkali-Ca exchange reactions and formation of nepheline,sodalite and Ca-rich phases in chondrules , 1995 .

[45]  D. Mittlefehldt,et al.  Chapter 4. NON-CHONDRITIC METEORITES FROM ASTEROIDAL BODIES , 1998 .

[46]  E. Anders,et al.  Meteorites and the Early Solar System , 1971 .

[47]  E. Stolper Experimental petrology of eucritic meteorites , 1977 .

[48]  S. Richardson VEIN FORMATION IN THE C1 CARBONACEOUS CHONDRITES , 1978 .

[49]  A. Meibom,et al.  Evidence for the insignificance of ordinary chondritic material in the asteroid belt , 1999 .

[50]  E. Takahashi Melting of a Yamato L3 chondorite (Y-74191) up to 30 kbar , 1983 .

[51]  P. Cassen,et al.  Theoretical, observational, and isotopic estimates of the lifetime of the solar nebula , 1994 .

[52]  R. Binzel,et al.  Chips off of Asteroid 4 Vesta: Evidence for the Parent Body of Basaltic Achondrite Meteorites , 1993, Science.

[53]  Robert N. Clayton Oxygen Isotopes in Meteorites , 1993 .

[54]  A. Rubin,et al.  Equilibration temperatures of EL chondrites: A major downward revision in the ferrosilite contents of enstatite , 1994 .

[55]  Gary E. Lofgren,et al.  Partial melting of the Indarch (EH4) meteorite: A textural, chemical, and phase relations view of melting and melt migration , 1999 .

[56]  Timothy J. McCoy,et al.  Non-chondritic meteorites from asteroidal bodies , 1998 .

[57]  E. Scott,et al.  Shock metamorphism of enstatite chondrites , 1997 .

[58]  G. J. Taylor,et al.  Metamorphic history of the eucritic crust of 4 Vesta , 1995 .

[59]  Lionel Wilson,et al.  Ascent and eruption of basaltic magma on the earth and moon , 1981 .

[60]  Y. Nakamuta,et al.  Sodic plagioclase thermometry of type 6 ordinary chondrites: Implications for the thermal histories of parent bodies , 1999 .

[61]  M. Zolensky,et al.  New petrographic and trace element data on thermally metamorphosed carbonaceous chondrites , 1999 .

[62]  C. Allègre,et al.  53Mn-53Cr evolution of the early solar system , 1999 .

[63]  K. Keil,et al.  High-temperature mass spectrometric degassing of enstatite chondrites: implications for pyroclastic volcanism on the aubrite parent body. , 1991 .

[64]  K. Keil,et al.  Volatiles in unequilibrated ordinary chondrites: Abundances, sources and implications for explosive volcanism on differentiated asteroids , 1995 .

[65]  T. E. Bunch,et al.  Carbonaceous chondrites. II - Carbonaceous chondrite phyllosilicates and light element geochemistry as indicators of parent body processes and surface conditions , 1980 .

[66]  P. Buseck,et al.  Calcic Micas in the Allende Meteorite: Evidence for Hydration Reactions in the Early Solar Nebula , 1991, Science.

[67]  V. V. Biryukov,et al.  Mineralogy, petrography, bulk chemical, iodine‐xenon, and oxygen‐isotopic compositions of dark inclusions in the reduced CV3 chondrite Efremovka , 1999 .

[68]  M. Miyamoto,et al.  Hydrothermal experiments on alteration of Ca-Al-rich inclusions (CAIs) in carbonaceous chondrites: implication for aqueous alteration in parent asteroids , 1998 .

[69]  M. Prinz,et al.  Fayalitic olivine in CV3 chondrite matrix and dark inclusions: A nebular origin , 1998 .

[70]  S. Sahijpal,et al.  Ion microprobe studies of Efremovka CAIs: II. Potassium isotope composition and 41Ca in the early Solar System , 1996 .

[71]  John A. Wood,et al.  A chemical-petrologic classification for the chondritic meteorites. , 1967 .

[72]  M. Zolensky,et al.  Mineralogical and chemical modification of components in CV3 chondrites: Nebular or asteroidal processing? , 1995 .

[73]  J. Armstrong,et al.  Constraints on the thermal history of the Allende parent body as derived from olivine-spinel thermometry and Fe/Mg interdiffusion in olivine , 1994 .

[74]  D. J. Barber,et al.  The microstructure of Semarkona and Bishunpur , 1989 .

[75]  Martin R. Lee,et al.  Aqueous alteration in the matrix of the Vigarano (CV3) carbonaceous chondrite , 1996 .

[76]  C. Goodrich Ureilites - A critical review , 1992 .

[77]  R. Housley,et al.  On the alteration of Allende chondrules and the formation of matrix , 1983 .

[78]  E. Anders,et al.  Organic compounds in meteorites and their origins , 1981 .

[79]  G. Lugmair,et al.  Early solar system timescales according to 53Mn-53Cr systematics , 1998 .

[80]  Michael J. Gaffey,et al.  Asteroid 6 Hebe: The probable parent body of the H‐type ordinary chondrites and the IIE iron meteorites , 1998 .

[81]  P. Buseck,et al.  Indicators of aqueous alteration in CM carbonaceous chondrites: Microtextures of a layered mineral containing Fe, S, O and Ni , 1985 .

[82]  M. Zolensky,et al.  Chemical, thermal and impact processing of asteroids , 1989 .

[83]  Martin R. Lee The Petrography, Mineralogy and Origins of Calcium Sulphate within the Cold Bokkeveld CM Carbonaceous Chondrite , 1993 .

[84]  M. Kimura,et al.  Anhydrous alteration of Allende chondrules in the solar nebura I: Description and alteration of chondrules with known oxygen-isotopic compositions , 1995 .

[85]  Lionel Wilson,et al.  A comparison of volcanic eruption processes on Earth, Moon, Mars, Io and Venus , 1983, Nature.

[86]  K. Keil,et al.  Consequences of explosive eruptions on small Solar System bodies: the case of the missing basalts on the aubrite parent body , 1991 .

[87]  R. T. Dodd Meteorites. A petrologic-chemical synthesis. , 1981 .

[88]  F. Podosek,et al.  Short-lived radionuclides in the solar nebula , 1997 .

[89]  E. Olsen,et al.  Equilibration temperatures of the ordinary chondrites: A new evaluation , 1984 .

[90]  R. Clayton,et al.  The oxygen isotope record in Murchison and other carbonaceous chondrites , 1984 .

[91]  G. Kurat The Formation of Chondrules and Chondrites and Some Observations on Chondrules from the Tieschitz Meteorite , 1969 .

[92]  J. Birck,et al.  Manganese—chromium isotope systematics and the development of the early Solar System , 1988, Nature.

[93]  M. Kimura,et al.  Hydrous and anhydrous alterations of chondrules in Kaba and Mokoia CV chondrites , 1998 .

[94]  Akai Junji Mineralogical evidence of heating events in Antarctic carbonaceous chondrites, Y-86720 and Y-82162 , 1990 .

[95]  John H. Jones,et al.  Origin of the earth , 1990 .

[96]  G. Lugmair,et al.  Isotopic evidence for the Cretaceous-Tertiary impactor and its type. , 1998, Science.

[97]  K. Keil,et al.  The melting of asteroidal-sized bodies by unipolar dynamo induction from a primordial T Tauri sun , 1970 .

[98]  R. Clayton,et al.  A petrologic and isotopic study of lodranites: Evidence for early formation as partial melt residues from heterogeneous precursors , 1997 .

[99]  K. Keil Enstatite meteorites and their parent bodies , 1989 .

[100]  Kevin Righter,et al.  A magma ocean on Vesta: Core formation and petrogenesis of eucrites and diogenites , 1997 .

[101]  H. Palme,et al.  Fayalite-rich rims, veins, and halos around and in forsteritic olivines in CAIs and chondrules in carbonaceous chondrites: Types, compositional profiles and constraints of their formation , 1988 .

[102]  K. Keil,et al.  The matrices of unequilibrated ordinary chondrites: Implications for the origin and history of chondrites , 1981 .

[103]  H. Haack,et al.  Thermal and shock history of mesosiderites and their large parent asteroid , 1996 .

[104]  Ikeda,et al.  Petrology of the Yamato-8449 CR chondrite , 1995 .

[105]  P. Buseck,et al.  FAYALITE IN THE KABA AND MOKOIA CARBONACEOUS CHONDRITES , 1995 .

[106]  W. Hartmann,et al.  Asteroids - The big picture , 1989 .

[107]  E. Pernicka,et al.  Qingzhen and Yamato-691: A tentative alphabet for the EH chondrites , 1988 .

[108]  A. Bischoff,et al.  Aqueous alteration of carbonaceous chondrites: Evidence for preaccretionary alteration—A review , 1998 .

[109]  D. Sears,et al.  The classification and complex thermal history of the enstatite chondrites , 1995 .

[110]  K. Keil,et al.  Explosive volcanism and the compositions of cores of differentiated asteroids , 1993 .

[111]  K. Keil,et al.  Composition of metal in aubrites: Constraints on core formation , 1993 .

[112]  K. Keil,et al.  A petrologic study of the IAB iron meteorites: Constraints on the formation of the IAB‐Winonaite parent body , 2000 .

[113]  H. McSween,et al.  Oxidation during metamorphism of the ordinary chondrites , 1993 .

[114]  P. C. Hess,et al.  Intensive parameters of enstatite chondrite metamorphism , 1989 .

[115]  A. Brearley Phyllosilicates in the matrix of the unique carbonaceous chondrite Lewis Cliff 85332 and possible implications for the aqueous alteration of CI chondrites , 1997 .

[116]  H. McSween,et al.  Pyroxene thermobarometry in LL-group chondrites and implications for parent body metamorphism , 1989 .

[117]  G. J. Taylor Core formation in asteroids , 1992 .

[118]  L. Grossman,et al.  Accretionary rims on inclusions in the Allende meteorite , 1985 .

[119]  J. A. Peck,et al.  The origin of ferrous zoning in Allende chondrule olivines , 1986 .

[120]  R. Clayton,et al.  Oxygen isotope studies of carbonaceous chondrites , 1999 .

[121]  E. Anders Origin, age, and composition of meteorites , 1964 .

[122]  G. Wasserburg,et al.  An isotopic and petrologic study of calcium-aluminum-rich inclusions from CO3 meteorites , 1998 .

[123]  H. Palme,et al.  Allende Xenolith AF: Undisturbed Record of Condensation and Aggregation of Matter in the Solar Nebula , 1989 .

[124]  J. Lunine,et al.  Protostars and planets III , 1993 .

[125]  Lunar,et al.  Chondrules and their origins , 1983 .

[126]  H. Newsom,et al.  Igneous activity in the early solar system. , 1988 .

[127]  Ernst K. Zinner,et al.  Astrophysical Implications of the Laboratory Study of Presolar Materials , 1997 .

[128]  K. Yanai,et al.  Yamato-86720: A CM carbonaceous chondrite having experienced extensive aqueous alteration and thermal metamorphism , 1989 .

[129]  H. Urey THE COSMIC ABUNDANCES OF POTASSIUM, URANIUM, AND THORIUM AND THE HEAT BALANCES OF THE EARTH, THE MOON, AND MARS. , 1955, Proceedings of the National Academy of Sciences of the United States of America.

[130]  G. Wasserburg,et al.  Correction [to “Demonstration of 26Mg excess in Allende and evidence for 26Al”] , 1976 .

[131]  L. Grossman,et al.  Early chemical history of the solar system , 1974 .

[132]  A. Brearley,et al.  Disordered biopyriboles, amphibole, and talc in the Allende meteorite: products of nebular or parent body aqueous alteration? , 1997, Science.

[133]  E. Scott,et al.  Classification and properties of iron meteorites , 1975 .

[134]  H. Takeda,et al.  A model for the origin of basaltic achondrites based on the Yamato 7308 Howardite , 1985 .

[135]  D. Sears,et al.  The thermometry of enstatite chondrites: A brief review and update , 1996 .

[136]  D. Sears,et al.  The type three ordinary chondrities: A review , 1987 .

[137]  H. McSween Petrographic variations among carbonaceous chondrites of the Vigarano type , 1977 .

[138]  A. Davis,et al.  The distribution of aluminum-26 in the early Solar System—A reappraisal , 1995 .

[139]  G. J. Taylor,et al.  Global Crustal Metamorphism of the Eucrite Parent Body , 1996 .

[140]  E. Scott Origin of anomalous iron meteorites , 1979, Mineralogical Magazine.

[141]  John F. Kerridge,et al.  Meteorites and the early solar system , 1988 .

[142]  A. D. Romig,et al.  The Shallowater aubrite: Evidence for origin by planetesimal impacts , 1989 .

[143]  R. Clayton,et al.  A petrologic, chemical, and isotopic study of Monument Draw and comparison with other acapulcoites: Evidence for formation by incipient partial melting , 1996 .

[144]  M. Zolensky,et al.  Origin of fayalitic olivine rims and lath‐shaped matrix olivine in the CV3 chondrite Allende and its dark inclusions , 1997 .

[145]  H. Takeda,et al.  Unusual dark clasts in the Vigarano CV3 carbonaceous chondrite: Record of parent body process , 1993 .

[146]  L. Fuchs Occurrence of wollastonite, rhnite, and andradite in the Allende meteorite. , 1971 .

[147]  G. J. Taylor,et al.  Origin of ureilite meteorites and implications for planetary accretion , 1993 .

[148]  G. J. Taylor,et al.  Asteroid differentiation - Pyroclastic volcanism to magma oceans , 1993 .

[149]  I. Hutcheon,et al.  Radiogenic 53Cr* in Orgueil Carbonates: Chronology of Aqueous Activity on the CI Parent Body , 1996 .

[150]  E. Anders,et al.  Chemical Evolution of the Carbonaceous Chondrites , 1962 .

[151]  Dale P. Cruikshank,et al.  Reflectance spectroscopy and asteroid surface mineralogy , 1989 .

[152]  M. Zolensky Hydrothermal alteration of CM carbonaceous chondrites; implications of the identification of tochilinite as one type of meteoritic PCP , 1984 .

[153]  D. Mittlefehldt Volatile degassing of basaltic achondrite parent bodies Evidence from alkali elements and phosphorus , 1987 .

[154]  M. Zolensky,et al.  Progressive alteration in CV3 chondrites: More evidence for asteroidal alteration , 1998 .

[155]  H. Takeda Mineralogical records of early planetary processes on the howardite, eucrite, diogenite parent body with reference to Vesta , 1997 .

[156]  K. Keil,et al.  PARTIAL MELTING AND MELT MIGRATION IN THE ACAPULCOITE-LODRANITE PARENT BODY , 1997 .

[157]  I. Hutcheon,et al.  Evidence from the Semarkona ordinary chondrite for 26A1 heating of small planets , 1989, Nature.

[158]  L. Taylor,et al.  Vesta as the howardite, eucrite and diogenite parent body: Implications for the size of a core and for large‐scale differentiation , 1997 .

[159]  K. Keil,et al.  A petrologic and isotopic study of winonaites: Evidence for early partial melting, brecciation, and metamorphism , 1998 .

[160]  E. Scott,et al.  Constraints on the role of impact heating and melting in asteroids , 1997 .

[161]  John H. Jones,et al.  Experimental partial melting of the Allende (CV) and Murchison (CM) chondrites and the origin of asteroidal basalts , 1993 .

[162]  K. Keil,et al.  The fate of pyroclasts produced in explosive eruptions on the asteroid 4 Vesta , 1997 .

[163]  Evolutionary time scales for circumstellar disks associated with intermediate- and solar-type stars , 1993 .

[164]  K. Keil,et al.  Volcanic eruptions and intrusions on the asteroid 4 Vesta , 1996 .

[165]  K. Keil Mineralogical and chemical relationships among enstatite chondrites , 1968 .

[166]  K. Keil,et al.  Clast sizes of ejecta from explosive eruptions on asteroids: implications for the fate of the basaltic products of differentiation , 1996 .

[167]  J F Kerridge,et al.  Magnetite in CI Carbonaceous Meteorites: Origin by Aqueous Activity on a Planetesimal Surface , 1979, Science.

[168]  A. Brearley,et al.  Bleached chondrules: Evidence for widespread aqueous processes on the parent asteroids of ordinary chondrites , 2000 .

[169]  M. Prinz,et al.  Petrologic study of the Belgica 7904 carbonaceous chondrite: Hydrous alteration, oxygen isotopes, and relationship to CM and CI chondrites , 1993 .

[170]  G. Lugmair,et al.  60Fe in eucrites , 1993 .