The Riemann – Hilbert approach to strong asymptotics for orthogonal polynomials on 1⁄2 1 ; 1
暂无分享,去创建一个
[1] Rene F. Swarttouw,et al. Orthogonal Polynomials , 2005, Series and Products in the Development of Mathematics.
[2] M. Stephanov,et al. Random Matrices , 2005, hep-ph/0509286.
[3] A. S. Fokas,et al. The Isomonodromy Approach to Matrix Models in 2 D Quantum Gravity , 2004 .
[4] M. Vanlessen. Universal Behavior for Averages of Characteristic Polynomials at the Origin of the Spectrum , 2003, math-ph/0306078.
[5] A. Kuijlaars,et al. Universality for Eigenvalue Correlations at the Origin of the Spectrum , 2003, math-ph/0305044.
[6] Z. Wang,et al. Asymptotic expansions for second-order linear difference equations with a turning point , 2003, Numerische Mathematik.
[7] A. Kuijlaars,et al. Quadratic Hermite–Padé Approximation to the Exponential Function: A Riemann–Hilbert Approach , 2003, math/0302357.
[8] Maarten Vanlessen,et al. Strong asymptotics of the recurrence coefficients of orthogonal polynomials associated to the generalized Jacobi weight , 2002, J. Approx. Theory.
[9] Arno B. J. Kuijlaars,et al. Riemann-Hilbert Analysis for Orthogonal Polynomials , 2003 .
[10] J. Baik,et al. Uniform Asymptotics for Polynomials Orthogonal With Respect to a General Class of Discrete Weights and Universality Results for Associated Ensembles , 2002, math/0212149.
[11] K. Mclaughlin,et al. Asymptotics of the partition function for random matrices via Riemann-Hilbert techniques and applications to graphical enumeration , 2002, math-ph/0211022.
[12] Y. Fyodorov,et al. Universal Results for Correlations of Characteristic Polynomials: Riemann-Hilbert Approach , 2002, math-ph/0210010.
[13] P. Deift,et al. A priori $L^p$ estimates for solutions of Riemann-Hilbert Problems , 2002, math/0206224.
[14] A. Kuijlaars,et al. Asymptotic Zero Behavior of Laguerre Polynomials with Negative Parameter , 2002, math/0205175.
[15] A. Kuijlaars,et al. Universality for eigenvalue correlations from the modified Jacobi unitary ensemble , 2002, math-ph/0204006.
[16] Pavel Bleher,et al. Double scaling limit in the random matrix model: The Riemann‐Hilbert approach , 2002, math-ph/0201003.
[17] P. Deift,et al. Perturbation theory for infinite-dimensional integrable systems on the line. A case study , 2002 .
[18] A. Kuijlaars,et al. Riemann-Hilbert Analysis for Laguerre Polynomials with Large Negative Parameter , 2002, math/0204248.
[19] P. Miller. Asymptotics of semiclassical soliton ensembles: rigorous justification of the WKB approximation , 2001, nlin/0108052.
[20] Stephanos Venakides,et al. A Riemann-Hilbert approach to asymptotic questions for orthogonal polynomials , 2001 .
[21] Doron S. Lubinsky,et al. Orthogonal Polynomials for Exponential Weights , 2001 .
[22] Laurent Baratchart,et al. Asymptotic Error Estimates for L2 Best Rational Approximants to Markov Functions , 2001, J. Approx. Theory.
[23] Peter D. Miller,et al. Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation , 2000, nlin/0012034.
[24] P. Deift. Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .
[25] D. Lubinsky. Asymptotics of Orthogonal Polynomials: Some Old, Some New, Some Identities , 2000 .
[26] W.-Y. QIU,et al. Uniform Asymptotic Formula for Orthogonal Polynomials with Exponential Weight , 2000, SIAM J. Math. Anal..
[27] R. Wong,et al. On the Asymptotics of the Meixner—Pollaczek Polynomials and Their Zeros , 2000 .
[28] Stephanos Venakides,et al. Strong asymptotics of orthogonal polynomials with respect to exponential weights , 1999 .
[29] Stephanos Venakides,et al. UNIFORM ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO VARYING EXPONENTIAL WEIGHTS AND APPLICATIONS TO UNIVERSALITY QUESTIONS IN RANDOM MATRIX THEORY , 1999 .
[30] Pavel Bleher,et al. Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model , 1999, math-ph/9907025.
[31] T. Kriecherbauer,et al. Strong asymptotics of polynomials orthogonal with respect to Freud weights , 1999 .
[32] J. Baik,et al. On the distribution of the length of the longest increasing subsequence of random permutations , 1998, math/9810105.
[33] Laurent Baratchart,et al. Asymptotic Uniqueness of Best Rational Approximants of Given Degree to Markov Functions in L 2 of the Circle , 1998 .
[34] Kurt Johansson,et al. ON RANDOM MATRICES FROM THE COMPACT CLASSICAL GROUPS , 1997 .
[35] A. Fokas,et al. Complex Variables: Introduction and Applications , 1997 .
[36] Stephanos Venakides,et al. New results in small dispersion KdV by an extension of the steepest descent method for Riemann-Hilbert problems , 1997 .
[37] P. Deift,et al. Asymptotics for the painlevé II equation , 1995 .
[38] C. Tracy,et al. Level spacing distributions and the Bessel kernel , 1993, hep-th/9304063.
[39] D. Lubinsky. An update on orthogonal polynomials and weighted approximation on the real line , 1993 .
[40] T. Nagao,et al. Laguerre ensembles of random matrices: Nonuniversal correlation functions , 1993 .
[41] P. Deift,et al. A steepest descent method for oscillatory Riemann-Hilbert problems , 1992, math/9201261.
[42] D. Lubinsky. A survey of general orthogonal polynomials for weights on finite and infinite intervals , 1987, Acta Applicandae Mathematicae.
[43] Walter Van Assche,et al. Asymptotics for Orthogonal Polynomials , 1987 .
[44] Paul Neval,et al. Ge´za Freud, orthogonal polynomials and Christoffel functions. A case study , 1986 .
[45] Leon M. Hall,et al. Special Functions , 1998 .