Experimental quantum network coding

Distributing quantum state and entanglement between distant nodes is a crucial task in distributed quantum information processing on large-scale quantum networks. Quantum network coding provides an alternative solution for quantum-state distribution, especially when the bottleneck problems must be considered and high communication speed is required. Here, we report the first experimental realization of quantum network coding on the butterfly network. With the help of prior entanglements shared between senders, two quantum states can be transmitted perfectly through the butterfly network. We demonstrate this protocol by employing eight photons generated via spontaneous parametric downconversion. We observe cross-transmission of single-photon states with an average fidelity of 0.9685 ± 0.0013, and that of two-photon entanglement with an average fidelity of 0.9611 ± 0.0061, both of which are greater than the theoretical upper bounds without prior entanglement.

[1]  J. Cirac,et al.  Entanglement percolation in quantum networks , 2006, quant-ph/0612167.

[2]  J. Eisert,et al.  Quantum network routing and local complementation , 2018, npj Quantum Information.

[3]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[4]  小林 弘忠,et al.  Constructing quantum network coding schemes from classical nonlinear protocols (コンピュテーション) , 2011 .

[5]  Hoi-Kwong Lo,et al.  Quantum cryptography with realistic devices , 2019, 1903.09051.

[6]  Cheng-Zhi Peng,et al.  Observation of eight-photon entanglement , 2011, Nature Photonics.

[7]  Shyamkishor Kumar NETWORK CODING THE CASE OF MULTIPLE UNICAST SESSIONS , 2015 .

[8]  Masahito Hayashi,et al.  Prior entanglement between senders enables perfect quantum network coding with modification , 2007, 0706.0197.

[9]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[10]  Iordanis Kerenidis,et al.  Shortcuts to quantum network routing , 2015, ArXiv.

[11]  Lajos Hanzo,et al.  Research Data: Towards the Quantum Internet: Generalised Quantum Network Coding for Large-scale Quantum Communication Networks , 2017 .

[12]  Tracey Ho,et al.  Network Coding: An Introduction , 2008 .

[13]  Masahito Hayashi,et al.  Quantum Network Coding , 2006, STACS.

[14]  R. Cleve,et al.  Quantum fingerprinting. , 2001, Physical review letters.

[15]  Rudolf Ahlswede,et al.  Network information flow , 2000, IEEE Trans. Inf. Theory.

[16]  小林 弘忠,et al.  General scheme for perfect quantum network coding with free classical communication (コンピュテーション) , 2009 .

[17]  Martin Rötteler,et al.  Perfect quantum network communication protocol based on classical network coding , 2009, 2010 IEEE International Symposium on Information Theory.

[18]  Debbie W. Leung,et al.  Quantum Network Communication—The Butterfly and Beyond , 2010, IEEE Transactions on Information Theory.

[19]  Akihito Soeda,et al.  Quantum computation over the butterfly network , 2010, 1010.4350.

[20]  Lajos Hanzo,et al.  Towards the Quantum Internet: Generalised Quantum Network Coding for Large-Scale Quantum Communication Networks , 2017, IEEE Access.

[21]  E. Soljanin,et al.  On Multicast in Quantum Networks , 2006, 2006 40th Annual Conference on Information Sciences and Systems.

[22]  Hiroshi Imai,et al.  Quantum network coding for quantum repeaters , 2012, 1205.3745.

[23]  Zhen Zhang,et al.  Distributed Source Coding for Satellite Communications , 1999, IEEE Trans. Inf. Theory.

[24]  H. Weinfurter,et al.  Experimental Entanglement Swapping: Entangling Photons That Never Interacted , 1998 .

[25]  Michael Epping,et al.  Robust entanglement distribution via quantum network coding , 2016 .

[26]  R. Cleve,et al.  Nonlocality and communication complexity , 2009, 0907.3584.

[27]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[28]  Rodney Van Meter,et al.  Analysis of quantum network coding for realistic repeater networks , 2015, 1508.02141.

[29]  J. Cirac,et al.  Quantum repeaters based on entanglement purification , 1998, quant-ph/9808065.

[30]  M. Curty,et al.  Secure quantum key distribution , 2014, Nature Photonics.

[31]  Xiongfeng Ma,et al.  Secure quantum key distribution with realistic devices , 2020 .

[32]  Sergei P. Kulik,et al.  Experimental entanglement concentration and universal Bell-state synthesizer , 2003 .