Linear and nonlinear optical properties of implanted Ca4GdO(BO3)3 planar waveguides

We report on a detailed investigation of optical planar waveguides fabricated in the new nonlinear Ca4GdO(BO3)3 crystal by ionic implantation. Both single and multiple He+ implantations are investigated. Second-harmonic generation (SHG) in He+ multiple-implanted samples are achieved by type I phase matching for fundamental light propagating along the y axis and polarized along the z axis at 823 nm and for light propagating along the x axis and polarized along the z axis at 960 nm. SHG operates with low-power pumping of a cw Ti:sapphire laser. Analyses of SHG within the waveguides are presented. The results indicate that the nonlinearity of the material remains in the guiding area after ion implantation. The conversion efficiency was found to be ∼10−2. This value is increased by ∼10% after 1 h annealing at 220°C.

[1]  F. Laurell,et al.  Nonlinear optical properties of (H + ,He + )- implanted planar waveguides in z-cut lithium niobate: annealing effect , 2001 .

[2]  Pascal Baldi,et al.  Soft proton exchange on periodically poled LiNbO3: A simple waveguide fabrication process for highly efficient nonlinear interactions , 2000 .

[3]  P. Moretti,et al.  Second-harmonic generation in He+-implanted gadolinium calcium oxoborate planar waveguides. , 1999, Optics letters.

[4]  B. Chai ADVANCES IN BULK INORGANIC NONLINEAR OPTICAL MATERIALS , 1999 .

[5]  Gerard Aka,et al.  Ytterbium-doped Ca 4 GdO(BO 3 ) 3 : an efficient infrared laser and self-frequency doubling crystal , 1999 .

[6]  P. Moretti,et al.  Electro-optic coefficients in H+-ion implanted LiNbO3 planar waveguide , 1999 .

[7]  Fredrik Laurell,et al.  Periodically poled materials for miniature light sources , 1999 .

[8]  F. Balembois,et al.  New green self-frequency-doubling diode-pumped Nd:Ca4GdO(BO3)3 laser , 1998 .

[9]  P. Moretti,et al.  Formation of planar optical waveguides in the new nonlinear gadolinium calcium oxoborate, Ca(4)GdO(BO(3))(3), crystal by 2-MeV He(+) implantation. , 1998, Optics letters.

[10]  F. Balembois,et al.  Self-frequency doubling of Nd:Ca4GdO(BO3)3 (Nd:GdCOB) Laser pumped by cw Ti:Sapphire or Laser Diode , 1998 .

[11]  P. Günter,et al.  Mode propagation losses in He + ion-implanted KNbO 3 waveguides , 1998 .

[12]  Robert J. Lang,et al.  Visible laser sources based on frequency doubling in nonlinear waveguides , 1997 .

[13]  François Salin,et al.  Linear- and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca 4 GdO(BO 3 ) 3 , 1997 .

[14]  A. Kahn-Harari,et al.  Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB) , 1997 .

[15]  P. Günter,et al.  Blue‐light second‐harmonic generation in ion‐implanted KNbO3 channel waveguides of new design , 1996 .

[16]  P. Townsend,et al.  Second‐harmonic generation in ion‐implanted quartz planar waveguides , 1991 .

[17]  P. Moretti,et al.  Waveguides Fabricated in LiNbO 3 by Proton Implantation , 1991 .

[18]  S. Fouchet,et al.  Wavelength dispersion of Ti induced refractive index change in LiNbO 3 as a function of diffusion parameters , 1987 .

[19]  Kin Seng Chiang,et al.  Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes , 1985 .

[20]  R Ulrich,et al.  Measurement of thin film parameters with a prism coupler. , 1973, Applied optics.

[21]  A. Yariv Coupled-mode theory for guided-wave optics , 1973 .