Vine copulas with asymmetric tail dependence and applications to financial return data

It has been shown that vine copulas constructed from bivariate t copulas can provide good fits to multivariate financial asset return data. However, there might be stronger tail dependence of returns in the joint lower tail of assets than the upper tail. To this end, vine copula models with appropriate choices of bivariate reflection asymmetric linking copulas will be used to assess such tail asymmetries. Comparisons of various vine copulas are made in terms of likelihood fit and forecasting of extreme quantiles.

[1]  C. Czado,et al.  Bayesian inference for multivariate copulas using pair-copula constructions. , 2010 .

[2]  Ling Hu Dependence patterns across financial markets: a mixed copula approach , 2006 .

[3]  Samuel Kotz,et al.  Multivariate T-Distributions and Their Applications , 2004 .

[4]  Bruno Rémillard,et al.  Dependence Properties of Meta-Elliptical Distributions , 2005 .

[5]  R. Nelsen An Introduction to Copulas (Springer Series in Statistics) , 2006 .

[6]  Dominique Guégan,et al.  Empirical estimation of tail dependence using copulas: application to Asian markets , 2005 .

[7]  Dean Fantazzini,et al.  The effects of misspecified marginals and copulas on computing the value at risk: A Monte Carlo study , 2009, Comput. Stat. Data Anal..

[8]  B. Rémillard,et al.  Goodness-of-fit tests for copulas: A review and a power study , 2006 .

[9]  K. Aas,et al.  Models for construction of multivariate dependence – a comparison study , 2009 .

[10]  W. Härdle,et al.  Inhomogeneous Dependence Modeling with Time-Varying Copulae , 2009 .

[11]  G. Box,et al.  On a measure of lack of fit in time series models , 1978 .

[12]  Kjersti Aas,et al.  Models for construction of multivariate dependence , 2007 .

[13]  Dean Fantazzini,et al.  Three-Stage Semi-Parametric Estimation of T-Copulas: Asymptotics, Finite-Sample Properties and Computational Aspects , 2009, Comput. Stat. Data Anal..

[14]  Peter F. Christoffersen Evaluating Interval Forecasts , 1998 .

[15]  Roger M. Cooke,et al.  Probability Density Decomposition for Conditionally Dependent Random Variables Modeled by Vines , 2001, Annals of Mathematics and Artificial Intelligence.

[16]  H. Joe Multivariate models and dependence concepts , 1998 .

[17]  Janet E. Heffernan A Directory of Coefficients of Tail Dependence , 2000 .

[18]  Friedrich Schmid,et al.  Dependence of Stock Returns in Bull and Bear Markets , 2010 .

[19]  Yan Liu,et al.  Efficient estimation of copula-GARCH models , 2009, Comput. Stat. Data Anal..

[20]  S. Poon,et al.  Financial Modeling Under Non-Gaussian Distributions , 2006 .

[21]  A. Frigessi,et al.  Pair-copula constructions of multiple dependence , 2009 .

[22]  F. Longin,et al.  Extreme Correlation of International Equity Markets , 2000 .

[23]  Aristidis K. Nikoloulopoulos,et al.  Tail dependence functions and vine copulas , 2010, J. Multivar. Anal..

[24]  Roger M. Cooke,et al.  Uncertainty Analysis with High Dimensional Dependence Modelling , 2006 .

[25]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[26]  Georges Tsafack,et al.  Asymmetric Dependence Implications for Extreme Risk Management , 2009, The Journal of Derivatives.

[27]  H. Joe Families of $m$-variate distributions with given margins and $m(m-1)/2$ bivariate dependence parameters , 1996 .

[28]  Lorán Chollete,et al.  Modeling International Financial Returns with a Multivariate Regime-switching Copula , 2009 .

[29]  Andréas Heinen,et al.  Asymmetric CAPM Dependence for Large Dimensions: The Canonical Vine Autoregressive Copula Model , 2008 .

[30]  Gerda Claeskens,et al.  Nonparametric Estimation , 2011, International Encyclopedia of Statistical Science.

[31]  Dimitris Karlis,et al.  Copula model evaluation based on parametric bootstrap , 2008, Comput. Stat. Data Anal..

[32]  R. Nelsen An Introduction to Copulas , 1998 .

[33]  Andrew Ang,et al.  Asymmetric Correlations of Equity Portfolios , 2001 .

[34]  Samuel Kotz,et al.  Multivariate t Distributions and Their Applications: Percentage Points , 2004 .

[35]  Guofu Zhou,et al.  Asymmetries in Stock Returns: Statistical Tests and Economic Evaluation , 2003 .

[36]  Aristidis K. Nikoloulopoulos,et al.  Extreme value properties of multivariate t copulas , 2009 .

[37]  Bruno Rémillard,et al.  Goodness‐of‐fit Procedures for Copula Models Based on the Probability Integral Transformation , 2006 .

[38]  Harry Joe,et al.  Multivariate Distributions from Mixtures of Max-Infinitely Divisible Distributions , 1996 .

[39]  Matthias Fischer,et al.  Multivariate Copula Models at Work: Outperforming the desert island copula? , 2007 .

[40]  Matthias Fischer,et al.  An empirical analysis of multivariate copula models , 2009 .

[41]  A. McNeil,et al.  The t Copula and Related Copulas , 2005 .

[42]  M. Rockinger,et al.  The Copula-GARCH model of conditional dependencies: An international stock market application , 2006 .

[43]  Christian M. Hafner,et al.  Efficient estimation of a semiparametric dynamic copula model , 2010, Comput. Stat. Data Anal..

[44]  G. Box,et al.  Distribution of Residual Autocorrelations in Autoregressive-Integrated Moving Average Time Series Models , 1970 .

[45]  Alexander J. McNeil,et al.  Multivariate Archimedean copulas, $d$-monotone functions and $\ell_1$-norm symmetric distributions , 2009, 0908.3750.

[46]  Lei Hua,et al.  Tail order and intermediate tail dependence of multivariate copulas , 2011, J. Multivar. Anal..

[47]  H. Joe Asymptotic efficiency of the two-stage estimation method for copula-based models , 2005 .

[48]  Michael P. Clements,et al.  Evaluating interval forecasts of high-frequency financial data , 2003 .

[49]  C. Necula A COPULA-GARCH MODEL , 2010 .

[50]  T. Bedford,et al.  Vines: A new graphical model for dependent random variables , 2002 .

[51]  Wolfgang Breymann,et al.  Dependence structures for multivariate high-frequency data in finance , 2003 .

[52]  Harry Joe,et al.  Parametric families of multivariate distributions with given margins , 1993 .

[53]  Harry Joe,et al.  Tail Dependence in Vine Copulae , 2010 .

[54]  S. Kotz,et al.  The Meta-elliptical Distributions with Given Marginals , 2002 .

[55]  María Concepción Ausín,et al.  Time-varying joint distribution through copulas , 2010, Comput. Stat. Data Anal..

[56]  Rafael Schmidt,et al.  Non‐parametric Estimation of Tail Dependence , 2006 .

[57]  Friedrich Schmid,et al.  Nonparametric estimation of the lower tail dependence λ L in bivariate copulas , 2005 .

[58]  Ludger Rüschendorf,et al.  Distributions with fixed marginals and related topics , 1999 .

[59]  Harry Joe,et al.  Dependence Comparisons of Vine Copulae with Four or More Variables , 2010 .

[60]  C. Genest,et al.  A semiparametric estimation procedure of dependence parameters in multivariate families of distributions , 1995 .

[61]  Ling Hu,et al.  Dependence Patterns across Financial Markets : Methods and Evidence ∗ , 2002 .