Machine Learning Methods for Magnetic Resonance Imaging Analysis.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

[1]  W. Markesbery,et al.  Hippocampal volume as an index of Alzheimer neuropathology: Findings from the Nun Study , 2002, Neurology.

[2]  C. Jack,et al.  Alzheimer's Disease Neuroimaging Initiative , 2008 .

[3]  Karl J. Friston,et al.  Statistical parametric mapping , 2013 .

[4]  A. P. Dawid,et al.  Regression and Classification Using Gaussian Process Priors , 2009 .

[5]  Erkki Oja,et al.  Independent component analysis: algorithms and applications , 2000, Neural Networks.

[6]  James D. Malley,et al.  Using Multivariate Machine Learning Methods and Structural MRI to Classify Childhood Onset Schizophrenia and Healthy Controls , 2012, Front. Psychiatry.

[7]  Karl J. Friston,et al.  The Precision of Anatomical Normalization in the Medial Temporal Lobe Using Spatial Basis Functions , 2002, NeuroImage.

[8]  Aapo Hyvärinen,et al.  New Approximations of Differential Entropy for Independent Component Analysis and Projection Pursuit , 1997, NIPS.

[9]  B. Biswal,et al.  Blind source separation of multiple signal sources of fMRI data sets using independent component analysis. , 1999, Journal of computer assisted tomography.

[10]  G. V. Van Hoesen,et al.  The Parahippocampal Gyrus in Alzheimer's Disease: Clinical and Preclinical Neuroanatomical Correlates , 2000, Annals of the New York Academy of Sciences.

[11]  J. Talairach,et al.  Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging , 1988 .

[12]  Aapo Hyvärinen,et al.  Survey on Independent Component Analysis , 1999 .

[13]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[14]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[15]  David D. Cox,et al.  Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex , 2003, NeuroImage.

[16]  S Makeig,et al.  Analysis of fMRI data by blind separation into independent spatial components , 1998, Human brain mapping.

[17]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[18]  Neil Roberts,et al.  Measurement of brain volume using MRI : software , techniques , choices and prerequisites , 2009 .

[19]  M. D’Esposito,et al.  The Variability of Human, BOLD Hemodynamic Responses , 1998, NeuroImage.

[20]  Robin Sibson,et al.  What is projection pursuit , 1987 .

[21]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[22]  D. Rueckert,et al.  Multi-Method Analysis of MRI Images in Early Diagnostics of Alzheimer's Disease , 2011, PloS one.

[23]  Nick C Fox,et al.  Automatic classification of MR scans in Alzheimer's disease. , 2008, Brain : a journal of neurology.

[24]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[25]  J. Cardoso Infomax and maximum likelihood for blind source separation , 1997, IEEE Signal Processing Letters.

[26]  J. Rajapakse,et al.  Human Brain Mapping 6:283–300(1998) � Modeling Hemodynamic Response for Analysis of Functional MRI Time-Series , 2022 .

[27]  M. D’Esposito,et al.  A Trial-Based Experimental Design for fMRI , 1997, NeuroImage.

[28]  Maxime Bonjean,et al.  “Relevance vector machine” consciousness classifier applied to cerebral metabolism of vegetative and locked-in patients , 2011, NeuroImage.

[29]  V D Calhoun,et al.  Spatial and temporal independent component analysis of functional MRI data containing a pair of task‐related waveforms , 2001, Human brain mapping.

[30]  Karl J. Friston,et al.  Incorporating Prior Knowledge into Image Registration , 1997, NeuroImage.

[31]  J. Ashburner,et al.  Nonlinear spatial normalization using basis functions , 1999, Human brain mapping.

[32]  C. Sherrington,et al.  On the Regulation of the Blood‐supply of the Brain , 1890, The Journal of physiology.

[33]  D. Heeger,et al.  Linear Systems Analysis of Functional Magnetic Resonance Imaging in Human V1 , 1996, The Journal of Neuroscience.

[34]  R. Petersen,et al.  Aging, Memory, and Mild Cognitive Impairment , 1997, International Psychogeriatrics.

[35]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[36]  Dinggang Shen,et al.  Multivariate examination of brain abnormality using both structural and functional MRI , 2007, NeuroImage.

[37]  Jeremy D. Schmahmann,et al.  The cerebellum and pain: Passive integrator or active participator? , 2010, Brain Research Reviews.

[38]  Bogdan Draganski,et al.  Neuroplasticity: Changes in grey matter induced by training , 2004, Nature.

[39]  Karl J. Friston,et al.  A Voxel-Based Method for the Statistical Analysis of Gray and White Matter Density Applied to Schizophrenia , 1995, NeuroImage.

[40]  A. Stoll,et al.  Frontal lobe gray matter density decreases in bipolar I disorder , 2004, Biological Psychiatry.

[41]  J. Cardoso,et al.  Blind beamforming for non-gaussian signals , 1993 .

[42]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[43]  R. Kikinis,et al.  Application of automated MRI volumetric measurement techniques to the ventricular system in schizophrenics and normal controls , 1991, Schizophrenia Research.

[44]  Thomas E. Nichols,et al.  Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate , 2002, NeuroImage.

[45]  Eric R Ziegel,et al.  Encyclopedia of Environmetrics Vols. 1-4 , 2002, Technometrics.

[46]  Nick C. Fox,et al.  Voxel-based morphometry detects patterns of atrophy that help differentiate progressive supranuclear palsy and Parkinson's disease , 2004, NeuroImage.

[47]  Tobias Schmidt-Wilcke,et al.  Changes in Regional Brain Morphology in Neuropsychiatric Systemic Lupus Erythematosus , 2012, The Journal of Rheumatology.

[48]  C. Bottino,et al.  Volumetric MRI Measurements Can Differentiate Alzheimer's Disease, Mild Cognitive Impairment, and Normal Aging , 2002, International Psychogeriatrics.

[49]  Clifford R Jack,et al.  Comparisons Between Alzheimer Disease, Frontotemporal Lobar Degeneration, and Normal Aging With Brain Mapping , 2005, Topics in magnetic resonance imaging : TMRI.

[51]  Nathalie Delfosse,et al.  Adaptive blind separation of independent sources: A deflation approach , 1995, Signal Process..

[52]  G. Frisoni,et al.  A voxel based morphometry study on mild cognitive impairment , 2004, Journal of Neurology, Neurosurgery & Psychiatry.

[53]  Nick C Fox,et al.  The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods , 2008, Journal of magnetic resonance imaging : JMRI.

[54]  H. Benali,et al.  Support vector machine-based classification of Alzheimer’s disease from whole-brain anatomical MRI , 2009, Neuroradiology.

[55]  Yul-Wan Sung,et al.  Functional magnetic resonance imaging , 2004, Scholarpedia.

[56]  R. Weisskoff,et al.  Effect of temporal autocorrelation due to physiological noise and stimulus paradigm on voxel‐level false‐positive rates in fMRI , 1998, Human brain mapping.

[57]  Gunnar Rätsch,et al.  Large Scale Multiple Kernel Learning , 2006, J. Mach. Learn. Res..

[58]  Karl J. Friston,et al.  Spatial registration and normalization of images , 1995 .

[59]  Stephen C. Strother,et al.  Support vector machines for temporal classification of block design fMRI data , 2005, NeuroImage.

[60]  Vince D. Calhoun,et al.  ICA of functional MRI data: an overview. , 2003 .

[61]  Karl J. Friston,et al.  Voxel-Based Morphometry of Herpes Simplex Encephalitis , 2001, NeuroImage.

[62]  O Josephs,et al.  Event-related functional magnetic resonance imaging: modelling, inference and optimization. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[63]  S. Ogawa,et al.  Oxygenation‐sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields , 1990, Magnetic resonance in medicine.

[64]  N. Stanhope,et al.  Structural MRI volumetric analysis in patients with organic amnesia, 2: correlations with anterograde memory and executive tests in 40 patients , 2001, Journal of neurology, neurosurgery, and psychiatry.

[65]  Bernhard Schölkopf,et al.  Support Vector Machine Applications in Computational Biology , 2004 .

[66]  Richard S. J. Frackowiak,et al.  Navigation-related structural change in the hippocampi of taxi drivers. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[67]  Tobias Schmidt-Wilcke,et al.  Changes in regional gray matter volume in women with chronic pelvic pain: A voxel-based morphometry study , 2012, PAIN®.

[68]  Stephen M. Smith,et al.  Temporal Autocorrelation in Univariate Linear Modeling of FMRI Data , 2001, NeuroImage.

[69]  Martha Elizabeth Shenton,et al.  Voxel-Based Morphometric Analysis of Gray Matter in First Episode Schizophrenia , 2002, NeuroImage.

[70]  Ethem Alpaydin,et al.  Multiple Kernel Learning Algorithms , 2011, J. Mach. Learn. Res..

[71]  Ferath Kherif,et al.  Multivariate voxel-based morphometry successfully differentiates schizophrenia patients from healthy controls , 2007, NeuroImage.

[72]  Emma J. Burton,et al.  A comprehensive study of gray matter loss in patients with Alzheimer’s disease using optimized voxel-based morphometry , 2003, NeuroImage.

[73]  Nello Cristianini,et al.  Learning the Kernel Matrix with Semidefinite Programming , 2002, J. Mach. Learn. Res..

[74]  Dinggang Shen,et al.  Morphological classification of brains via high-dimensional shape transformations and machine learning methods , 2004, NeuroImage.

[75]  Matthias L. Schroeter,et al.  Neural correlates of Alzheimer's disease and mild cognitive impairment: A systematic and quantitative meta-analysis involving 1351 patients , 2009, NeuroImage.

[76]  Philippe Garat,et al.  Blind separation of mixture of independent sources through a quasi-maximum likelihood approach , 1997, IEEE Trans. Signal Process..

[77]  M N Rossor,et al.  Patterns of temporal lobe atrophy in semantic dementia and Alzheimer's disease , 2001, Annals of neurology.

[78]  Yaakov Stern,et al.  Multivariate and Univariate Analysis of Continuous Arterial Spin Labeling Perfusion MRI in Alzheimer's Disease , 2008, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[79]  Dinggang Shen,et al.  Classification of Structural Images via High-Dimensional Image Warping, Robust Feature Extraction, and SVM , 2005, MICCAI.

[80]  S. Bang,et al.  Precuneus hypoperfusion plays an important role in memory impairment of patients with systemic lupus erythematosus , 2011, Lupus.

[81]  Karl J. Friston,et al.  Event-related fMRI , 1997 .

[82]  Karl J. Friston,et al.  Voxel-based morphometry of the human brain: Methods and applications , 2005 .

[83]  C D Good,et al.  The distribution of structural neuropathology in pre-clinical Huntington's disease. , 2002, Brain : a journal of neurology.

[84]  Karl J. Friston,et al.  Movement‐Related effects in fMRI time‐series , 1996, Magnetic resonance in medicine.

[85]  Christos Davatzikos,et al.  Why voxel-based morphometric analysis should be used with great caution when characterizing group differences , 2004, NeuroImage.