Theoretical study on dependence of hyperpolarizability of one‐dimensional ring system on the delocalization transition

We calculate the optical properties such as the polarization, the (hyper)polarizabilities, the critical vector potential, etc., in terms of the non-Hermitian Anderson model of a 6-site ring model. The dependence of the optical properties on the delocalization transition is investigated. It is found that all the total optical properties nonlinearly increase with the increase of the delocalization. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001

[1]  K. Kamada,et al.  On the discrepancy between theoretical calculation and experimental observation of second hyperpolarizability of furan homologues , 2000 .

[2]  K. Kamada,et al.  Molecular Design for Organic Nonlinear Optics: Polarizability and Hyperpolarizabilities of Furan Homologues Investigated by Ab Initio Molecular Orbital Method† , 2000 .

[3]  S. Yamada,et al.  Theoretical study on polarizability of ethylene by path integral method , 1999 .

[4]  S. Yamada,et al.  ELECTRON CORRELATION AND STRUCTURE DEPENDENCIES OF THE SECOND HYPERPOLARIZABILITY OF ETHYLENE , 1999 .

[5]  S. Yamada,et al.  Numerical Coupled Liouville Approach: Application to Second Hyperpolarizability of Molecular Aggregate , 1999 .

[6]  K. Kamada,et al.  Heavy-atom effect on second hyperpolarizabilities of thiophene homologues investigated by a femtosecond optical-Kerr-effect experiment and ab initio molecular orbital calculation , 1998 .

[7]  I. Goldsheid,et al.  DISTRIBUTION OF EIGENVALUES IN NON-HERMITIAN ANDERSON MODELS , 1997, cond-mat/9707230.

[8]  K. Kamada,et al.  Effect of heavy atom on the second hyperpolarizability of tetrahydrofuran homologs investigated by ab initio molecular orbital method , 1998 .

[9]  K. Kamada,et al.  Ab initio molecular orbital calculation of the second hyperpolarizability of the carbon disulfide molecule: electron correlation and frequency dispersion , 1997 .

[10]  S. Yamada,et al.  Theoretical study on second hyperpolarizability of H3+ system by path integral method , 1997 .

[11]  S. Yamada,et al.  Theoretical studies for second hyperpolarizabilities of alternant and condensed-ring conjugated systems II , 1997 .

[12]  M. Nakano,et al.  MANY-ELECTRON HYPERPOLARIZABILITY DENSITY ANALYSIS : APPLICATION TO THE DISSOCIATION PROCESS OF ONE-DIMENSIONAL H2 , 1997 .

[13]  M. Nakano,et al.  Theoretical studies of second hyperpolarizability by path integral method: Effects of external magnetic field , 1997 .

[14]  Nelson,et al.  Localization Transitions in Non-Hermitian Quantum Mechanics. , 1996, Physical review letters.

[15]  S. Yamada,et al.  MANY-ELECTRON-WAVEPACKETS METHOD , 1996 .

[16]  Y. Shigeta,et al.  Nonadiabatic Treatment of Molecular Systems by the Wavepackets Method , 1996 .

[17]  Kim Bethe ansatz solution for crossover scaling functions of the asymmetric XXZ chain and the Kardar-Parisi-Zhang-type growth model. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  Mikheev,et al.  Continuum Limit, Galilean Invariance, and Solitons in the Quantum Equivalent of the Noisy Burgers Equation. , 1995, Physical review letters.

[19]  André Persoons,et al.  THIRD-ORDER NONLINEAR OPTICAL RESPONSE IN ORGANIC MATERIALS : THEORETICAL AND EXPERIMENTAL ASPECTS , 1994 .

[20]  N. Moiseyev Resonance states by the generalized complex variational method , 1982 .

[21]  H. F. Hameka,et al.  Calculation of nonlinear susceptibilities of nitrogen‐containing heterocycles and of nitriles , 1979 .

[22]  H. F. Hameka,et al.  Calculation of nonlinear electric susceptibilities of aromatic hydrocarbons , 1978 .

[23]  H. F. Hameka,et al.  Improved calculation of nonlinear electric susceptibilities of conjugated hydrocarbon chains , 1978 .

[24]  H. F. Hameka Calculation of linear and nonlinear electric susceptibilities of conjugated hydrocarbon chains , 1977 .

[25]  B. McCoy,et al.  Hydrogen-bonded crystals and the anisotropic heisenberg chain , 1968 .

[26]  J. Swift,et al.  Transport Coefficients near the Critical Point: A Master-Equation Approach , 1968 .