Understanding trends in electrochemical carbon dioxide reduction rates

Electrochemical carbon dioxide reduction to fuels presents one of the great challenges in chemistry. Herein we present an understanding of trends in electrocatalytic activity for carbon dioxide reduction over different metal catalysts that rationalize a number of experimental observations including the selectivity with respect to the competing hydrogen evolution reaction. We also identify two design criteria for more active catalysts. The understanding is based on density functional theory calculations of activation energies for electrochemical carbon monoxide reduction as a basis for an electrochemical kinetic model of the process. We develop scaling relations relating transition state energies to the carbon monoxide adsorption energy and determine the optimal value of this descriptor to be very close to that of copper.

[1]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[2]  Jeremy T. Feaster,et al.  Synthesis of thin film AuPd alloys and their investigation for electrocatalytic CO2 reduction , 2015 .

[3]  Yanli Wang,et al.  Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009 .

[4]  J. Nørskov,et al.  Barriers of Electrochemical CO2 Reduction on Transition Metals , 2016 .

[5]  Jens K Nørskov,et al.  Trends in electrochemical CO2 reduction activity for open and close-packed metal surfaces. , 2014, Physical chemistry chemical physics : PCCP.

[6]  Egill Skúlason,et al.  Modeling the electrified solid-liquid interface , 2008 .

[7]  Thomas Bligaard,et al.  CatMAP: A Software Package for Descriptor-Based Microkinetic Mapping of Catalytic Trends , 2015, Catalysis Letters.

[8]  M. Fontecave,et al.  From molecular copper complexes to composite electrocatalytic materials for selective reduction of CO2 to formic acid , 2015 .

[9]  Dusan Strmcnik,et al.  Enhancing Hydrogen Evolution Activity in Water Splitting by Tailoring Li+‐Ni(OH)2‐Pt Interfaces. , 2012 .

[10]  F. Abild‐Pedersen,et al.  CO adsorption energies on metals with correction for high coordination adsorption sites – A density functional study , 2007 .

[11]  Jae Kwang Lee,et al.  Sustainable production of formic acid by electrolytic reduction of gaseous carbon dioxide , 2015 .

[12]  Sonja A. Francis,et al.  Nickel–Gallium-Catalyzed Electrochemical Reduction of CO2 to Highly Reduced Products at Low Overpotentials , 2016 .

[13]  Andrew A. Peterson,et al.  Activity Descriptors for CO2 Electroreduction to Methane on Transition-Metal Catalysts , 2012 .

[14]  Ib Chorkendorff,et al.  Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. , 2014, Nature chemistry.

[15]  M. Łukaszewski,et al.  Electrochemical behavior of Pd–Rh alloys , 2006 .

[16]  F. Abild‐Pedersen,et al.  Computational catalyst screening: Scaling, bond-order and catalysis , 2016 .

[17]  Etosha R. Cave,et al.  Insights into the electrocatalytic reduction of CO₂ on metallic silver surfaces. , 2014, Physical chemistry chemical physics : PCCP.

[18]  Mohammad Asadi,et al.  Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid , 2016, Science.

[19]  Jia‐Xing Lu,et al.  Selective electrochemical reduction of CO2 to different alcohol products by an organically doped alloy catalyst , 2016 .

[20]  C. Reed,et al.  The structure of the hydrogen ion (H(aq)+) in water. , 2010, Journal of the American Chemical Society.

[21]  M. Head‐Gordon,et al.  Identification of Possible Pathways for C-C Bond Formation during Electrochemical Reduction of CO2: New Theoretical Insights from an Improved Electrochemical Model. , 2016, The journal of physical chemistry letters.

[22]  Philip N. Ross,et al.  TEMPERATURE-DEPENDENT HYDROGEN ELECTROCHEMISTRY ON PLATINUM LOW-INDEX SINGLE-CRYSTAL SURFACES IN ACID SOLUTIONS , 1997 .

[23]  Karen Chan,et al.  Molybdenum Sulfides and Selenides as Possible Electrocatalysts for CO2 Reduction , 2014 .

[24]  Joseph H. Montoya,et al.  Theoretical Insights into a CO Dimerization Mechanism in CO2 Electroreduction. , 2015, The journal of physical chemistry letters.

[25]  P. Kenis,et al.  Ionic Liquid–Mediated Selective Conversion of CO2 to CO at Low Overpotentials , 2011, Science.

[26]  M. Dunwell,et al.  CO2 Reduction on Cu at Low Overpotentials with Surface-Enhanced in Situ Spectroscopy , 2016 .

[27]  Paul J. A. Kenis,et al.  Influence of dilute feed and pH on electrochemical reduction of CO2 to CO on Ag in a continuous flow electrolyzer , 2015 .

[28]  J. Nørskov,et al.  Role of Steps in N 2 Activation on Ru(0001) , 1999 .

[29]  Melanie Keller,et al.  Essentials Of Computational Chemistry Theories And Models , 2016 .

[30]  Jaeyoung Lee,et al.  Formic Acid from Carbon Dioxide on Nanolayered Electrocatalyst , 2010 .

[31]  Makiko Kato,et al.  Electrochemical reduction of CO2 on single crystal electrodes of silver Ag(111), Ag(100) and Ag(110) , 1997 .

[32]  M. Lázaro,et al.  Pd catalysts supported onto nanostructured carbon materials for CO2 valorization by electrochemical reduction , 2015 .

[33]  Yoshio Hori,et al.  Electrochemical reduction of carbon dioxide at a series of platinum single crystal electrodes , 2000 .

[34]  Toshio Tsukamoto,et al.  Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media , 1994 .

[35]  J. Nørskov,et al.  Fundamental Concepts in Heterogeneous Catalysis , 2014 .

[36]  J. Nørskov,et al.  Towards the computational design of solid catalysts. , 2009, Nature chemistry.

[37]  Robert T McGibbon,et al.  Electrocatalytic carbon dioxide activation: the rate-determining step of pyridinium-catalyzed CO2 reduction. , 2011, ChemSusChem.

[38]  Thomas F. Jaramillo,et al.  Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. , 2014, Journal of the American Chemical Society.

[39]  P. Strasser,et al.  Controlling Catalytic Selectivities during CO2 Electroreduction on Thin Cu Metal Overlayers , 2013 .

[40]  Thomas Bligaard,et al.  Assessing the reliability of calculated catalytic ammonia synthesis rates , 2014, Science.

[41]  Ture R. Munter,et al.  Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. , 2007, Physical review letters.

[42]  Thomas Bligaard,et al.  Density functionals for surface science: Exchange-correlation model development with Bayesian error estimation , 2012 .

[43]  J. Augustynski,et al.  Electrochemical reduction of bicarbonate ions at a bright palladium cathode , 1985 .

[44]  P. Král,et al.  Robust carbon dioxide reduction on molybdenum disulphide edges , 2014, Nature Communications.

[45]  Nathan S. Lewis,et al.  Operational constraints and strategies for systems to effect the sustainable, solar-driven reduction of atmospheric CO2 , 2015 .

[46]  Byoungsu Kim,et al.  A Gross-Margin Model for Defining Technoeconomic Benchmarks in the Electroreduction of CO2. , 2016, ChemSusChem.

[47]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[48]  Ravishankar Sundararaman,et al.  Mechanistic Explanation of the pH Dependence and Onset Potentials for Hydrocarbon Products from Electrochemical Reduction of CO on Cu (111). , 2016, Journal of the American Chemical Society.

[49]  Andrew J. Medford,et al.  On the effect of coverage-dependent adsorbate–adsorbate interactions for CO methanation on transition metal surfaces , 2013 .

[50]  Youn-Geun Kim,et al.  Regulating the Product Distribution of CO Reduction by the Atomic-Level Structural Modification of the Cu Electrode Surface , 2016, Electrocatalysis.

[51]  J. Nørskov,et al.  Universal transition state scaling relations for (de)hydrogenation over transition metals. , 2011, Physical chemistry chemical physics : PCCP.

[52]  Hongyi Zhang,et al.  Active and selective conversion of CO2 to CO on ultrathin Au nanowires. , 2014, Journal of the American Chemical Society.

[53]  Y. Surendranath,et al.  Mesostructure-Induced Selectivity in CO2 Reduction Catalysis. , 2015, Journal of the American Chemical Society.

[54]  J. Nørskov,et al.  BEP relations for N2 dissociation over stepped transition metal and alloy surfaces. , 2008, Physical chemistry chemical physics : PCCP.

[55]  Andrew J. Medford,et al.  Intrinsic Selectivity and Structure Sensitivity of Rhodium Catalysts for C(2+) Oxygenate Production. , 2016, Journal of the American Chemical Society.

[56]  Charlie Tsai,et al.  How Doped MoS2 Breaks Transition-Metal Scaling Relations for CO2 Electrochemical Reduction , 2016 .

[57]  E. Hertwich,et al.  Global warming footprint of the electrochemical reduction of carbon dioxide to formate , 2015 .

[58]  A. Nilsson,et al.  Electroreduction of Carbon Monoxide Over a Copper Nanocube Catalyst: Surface Structure and pH Dependence on Selectivity , 2016 .

[59]  Y. Minenkov,et al.  A highly selective copper-indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO. , 2015, Angewandte Chemie.

[60]  K. Ohta,et al.  Electrochemical reduction of carbon dioxide to ethylene with high Faradaic efficiency at a Cu electrode in CsOH/methanol , 1999 .

[61]  Matthew W. Kanan,et al.  Probing the Active Surface Sites for CO Reduction on Oxide-Derived Copper Electrocatalysts. , 2015, Journal of the American Chemical Society.

[62]  Iftekhar A. Karimi,et al.  Modeling and Experimental Validation of Electrochemical Reduction of CO2 to CO in a Microfluidic Cell , 2015 .

[63]  Yoshio Hori,et al.  Structural effect on the rate of CO2 reduction on single crystal electrodes of palladium , 1997 .

[64]  K. Ohta,et al.  Electrochemical reduction of carbon dioxide atTi and hydrogen-storing Ti electrodes inKOH–methanol , 1998 .

[65]  Y. Surendranath,et al.  Inhibited proton transfer enhances Au-catalyzed CO2-to-fuels selectivity , 2016, Proceedings of the National Academy of Sciences.

[66]  Satoshi Mikoshiba,et al.  Electrochemical reduction of CO2 to ethylene glycol on imidazolium ion-terminated self-assembly monolayer-modified Au electrodes in an aqueous solution. , 2015, Physical chemistry chemical physics : PCCP.

[67]  Michel Dupuis,et al.  Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. , 2013, Chemical reviews.

[68]  Hisayoshi Matsushima,et al.  Reconstruction of Cu(100) electrode surfaces during hydrogen evolution. , 2009, Journal of the American Chemical Society.

[69]  William J. Durand,et al.  The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction. , 2012, Physical chemistry chemical physics : PCCP.

[70]  K. Ohta,et al.  Electrochemical Reduction of Carbon Dioxide on an Indium Wire in a KOH/Methanol-Based Electrolyte at Ambient Temperature and Pressure , 1999 .