Comparing Timed C/E Systems with Timed Automata

In a reachability-time game, players Min and Max choose moves so that the time to reach a final state in a timed automaton is minimised or maximised, respectively. Asarin and Maler showed decidability of reachability-time games on strongly non-Zeno timed automata using a value iteration algorithm. This paper complements their work by providing a strategy improvement algorithm for the problem. It also generalizes their decidability result because the proposed strategy improvement algorithm solves reachability-time games on all timed automata. The exact computational complexity of solving reachability-time games is also established: the problem is EXPTIME-complete for timed automata with at least two clocks.

[1]  Bruce H. Krogh,et al.  Condition/event signal interfaces for block diagram modeling and analysis of hybrid systems , 1993, Proceedings of 8th IEEE International Symposium on Intelligent Control.

[2]  Marcin Jurdzinski,et al.  Model Checking Probabilistic Timed Automata with One or Two Clocks , 2007, Log. Methods Comput. Sci..

[3]  Thomas A. Henzinger,et al.  The Element of Surprise in Timed Games , 2003, CONCUR.

[4]  Bruce H. Krogh,et al.  On condition/event systems with discrete state realizations , 1991, Discret. Event Dyn. Syst..

[5]  Marcin Jurdzinski,et al.  A Discrete Strategy Improvement Algorithm for Solving Parity Games , 2000, CAV.

[6]  A. Pnueli,et al.  CONTROLLER SYNTHESIS FOR TIMED AUTOMATA , 2006 .

[7]  Ahmed Bouajjani,et al.  Model-Checking for Extended Timed Temporal Logics , 1996, FTRTFT.

[8]  Thomas A. Henzinger,et al.  Minimum-Time Reachability in Timed Games , 2007, ICALP.

[9]  Kim G. Larsen,et al.  Optimal Strategies in Priced Timed Game Automata , 2004, FSTTCS.

[10]  T. Henzinger The Beneets of Relaxing Punctuality , 1996 .

[11]  Ahmed Bouajjani,et al.  Temporal Logic + Timed Automata: Expressiveness and Decidability , 1995, CONCUR.

[12]  Costas Courcoubetis,et al.  Minimum and maximum delay problems in real-time systems , 1991, Formal Methods Syst. Des..

[13]  Patricia Bouyer,et al.  Improved undecidability results on weighted timed automata , 2006, Inf. Process. Lett..

[14]  Kim G. Larsen,et al.  Almost Optimal Strategies in One Clock Priced Timed Games , 2006, FSTTCS.

[15]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[16]  Véronique Bruyère,et al.  On the optimal reachability problem of weighted timed automata , 2007, Formal Methods Syst. Des..

[17]  Patricia Bouyer,et al.  Weighted Timed Automata: Model-Checking and Games , 2006, MFPS.

[18]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[19]  Kim G. Larsen,et al.  On using priced timed automata to achieve optimal scheduling , 2006, Formal Methods Syst. Des..

[20]  Joseph Sifakis,et al.  Controller Synthesis for Timed Automata 1 , 1998 .

[21]  H.-M. Hanisch,et al.  Synthesis of supervisory controllers based on a novel representation of condition/event systems , 1995, 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century.

[22]  Stefan Kowalewski,et al.  Condition/Event Systems: a Powerful Paradigm for Timed and Untimed Discrete Models of Technical Systems , 1995, EUROSIM.

[23]  Asok Ray,et al.  A reconfigurable hybrid supervisory system for process control , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[24]  Kim Guldstrand Larsen,et al.  Almost Optimal Strategies in One Clock Priced Timed Automata , 2007 .

[25]  Rajeev Alur,et al.  Optimal Reachability for Weighted Timed Games , 2004, ICALP.

[26]  Eugene Asarin,et al.  Scheduling with timed automata , 2006, Theor. Comput. Sci..

[27]  Patricia Bouyer,et al.  Weighted O-Minimal Hybrid Systems Are More Decidable Than Weighted Timed Automata! , 2007, LFCS.

[28]  Eugene Asarin,et al.  As Soon as Possible: Time Optimal Control for Timed Automata , 1999, HSCC.

[29]  Thomas Wilke Automaten und Logiken zur Beschreibung zeitabhängiger Systeme , 1994 .

[30]  Lawrence E. Holloway,et al.  TIME MEASURES AND STATE MAINTAINABILITY FOR A CLASS OF COMPOSED SYSTEMS , 2007 .

[31]  Mihalis Yannakakis,et al.  Minimum and maximum delay problems in real-time systems , 1991, Formal Methods Syst. Des..

[32]  Satoshi Yamane,et al.  The symbolic model-checking for real-time systems , 1996, Proceedings of the Eighth Euromicro Workshop on Real-Time Systems.

[33]  Kim G. Larsen,et al.  Minimum-Cost Reachability for Priced Timed Automata , 2001, HSCC.

[34]  Ingo Hoffmann,et al.  Modular hierarchical models of hybrid systems , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[35]  Thomas A. Henzinger,et al.  Timed Alternating-Time Temporal Logic , 2006, FORMATS.

[36]  Philippe Schnoebelen,et al.  Model Checking Timed Automata with One or Two Clocks , 2004, CONCUR.