Architecture of the type IV coupling protein complex of Legionella pneumophila

[1]  Keehyoung Joo,et al.  Template based protein structure modeling by global optimization in CASP11 , 2016, Proteins.

[2]  Christian González-Rivera,et al.  Chimeric Coupling Proteins Mediate Transfer of Heterologous Type IV Effectors through the Escherichia coli pKM101-Encoded Conjugation Machine , 2016, Journal of bacteriology.

[3]  Ben M. Webb,et al.  Comparative Protein Structure Modeling Using MODELLER , 2016, Current protocols in bioinformatics.

[4]  Johannes Söding,et al.  The MPI bioinformatics Toolkit as an integrative platform for advanced protein sequence and structure analysis , 2016, Nucleic Acids Res..

[5]  H. Hilbi,et al.  Formation of a pathogen vacuole according to Legionella pneumophila: how to kill one bird with many stones , 2015, Cellular microbiology.

[6]  Nam Ki Lee,et al.  Dynamic Release of Bending Stress in Short dsDNA by Formation of a Kink and Forks† , 2015, Angewandte Chemie.

[7]  Yuqing Chen,et al.  The All-Alpha Domains of Coupling Proteins from the Agrobacterium tumefaciens VirB/VirD4 and Enterococcus faecalis pCF10-Encoded Type IV Secretion Systems Confer Specificity to Binding of Cognate DNA Substrates , 2015, Journal of bacteriology.

[8]  Tal Pupko,et al.  Computational modeling and experimental validation of the Legionella and Coxiella virulence-related type-IVB secretion signal , 2013, Proceedings of the National Academy of Sciences.

[9]  Molly C. Sutherland,et al.  The Legionella IcmSW Complex Directly Interacts with DotL to Mediate Translocation of Adaptor-Dependent Substrates , 2012, PLoS pathogens.

[10]  J. Friedman,et al.  Identification of the DotL coupling protein subcomplex of the Legionella Dot/Icm type IV secretion system , 2012, Molecular microbiology.

[11]  J. Schildbach,et al.  Assembly and mechanisms of bacterial type IV secretion machines , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[12]  Daniel E. Voth,et al.  Bacterial Type IV secretion systems: versatile virulence machines. , 2012, Future microbiology.

[13]  T. Ha,et al.  Single-molecule pull-down for studying protein interactions , 2012, Nature Protocols.

[14]  M. Hingorani Faculty Opinions recommendation of Probing cellular protein complexes using single-molecule pull-down. , 2011 .

[15]  Zhao-Qing Luo,et al.  The E Block motif is associated with Legionella pneumophila translocated substrates , 2010, Cellular microbiology.

[16]  K. Walldén,et al.  Type IV secretion systems: versatility and diversity in function , 2010, Cellular microbiology.

[17]  Liisa Holm,et al.  Dali server: conservation mapping in 3D , 2010, Nucleic Acids Res..

[18]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[19]  Y. Kwaik,et al.  Molecular Characterization of the Dot/Icm-Translocated AnkH and AnkJ Eukaryotic-Like Effectors of Legionella pneumophila , 2009, Infection and Immunity.

[20]  Roland L. Dunbrack,et al.  Improved prediction of protein side‐chain conformations with SCWRL4 , 2009, Proteins.

[21]  K. Joo,et al.  All‐atom chain‐building by optimizing MODELLER energy function using conformational space annealing , 2009, Proteins.

[22]  J. Celli,et al.  A Legionella pneumophila Effector Protein Encoded in a Region of Genomic Plasticity Binds to Dot/Icm-Modified Vacuoles , 2009, PLoS pathogens.

[23]  Keehyoung Joo,et al.  Multiple sequence alignment by conformational space annealing. , 2008, Biophysical journal.

[24]  J. Glover,et al.  Structural basis of specific TraD–TraM recognition during F plasmid‐mediated bacterial conjugation , 2008, Molecular microbiology.

[25]  Mario Juhas,et al.  Type IV secretion systems: tools of bacterial horizontal gene transfer and virulence , 2008, Cellular microbiology.

[26]  Rahul Roy,et al.  A practical guide to single-molecule FRET , 2008, Nature Methods.

[27]  E. D. Cambronne,et al.  The Legionella pneumophila IcmSW Complex Interacts with Multiple Dot/Icm Effectors to Facilitate Type IV Translocation , 2007, PLoS pathogens.

[28]  Ben M. Webb,et al.  Comparative Protein Structure Modeling Using MODELLER , 2007, Current protocols in protein science.

[29]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[30]  J. Friedman,et al.  Identification of the core transmembrane complex of the Legionella Dot/Icm type IV secretion system , 2006, Molecular microbiology.

[31]  J. Vogel,et al.  The Legionella pneumophila IcmS–LvgA protein complex is important for Dot/Icm‐dependent intracellular growth , 2006, Molecular microbiology.

[32]  J. Sexton,et al.  Genetic analysis of the Legionella pneumophila DotB ATPase reveals a role in type IV secretion system protein export , 2005, Molecular microbiology.

[33]  R. Isberg,et al.  The DotL Protein, a Member of the TraG-Coupling Protein Family, Is Essential for Viability of Legionella pneumophila Strain Lp02 , 2005, Journal of bacteriology.

[34]  Nam Ki Lee,et al.  Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation. , 2005, Biophysical journal.

[35]  J Patrick Bardill,et al.  IcmS‐dependent translocation of SdeA into macrophages by the Legionella pneumophila type IV secretion system , 2005, Molecular microbiology.

[36]  Hiroki Nagai,et al.  A C-terminal translocation signal required for Dot/Icm-dependent delivery of the Legionella RalF protein to host cells. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[37]  E. D. Cambronne,et al.  The Legionella IcmS–IcmW protein complex is important for Dot/Icm‐mediated protein translocation , 2004, Molecular microbiology.

[38]  E. Cascales,et al.  Energetic components VirD4, VirB11 and VirB4 mediate early DNA transfer reactions required for bacterial type IV secretion , 2004, Molecular microbiology.

[39]  E. Cascales,et al.  Agrobacterium tumefaciens VirB6 domains direct the ordered export of a DNA substrate through a type IV secretion System. , 2004, Journal of molecular biology.

[40]  M. Solà,et al.  Coupling factors in macromolecular type-IV secretion machineries. , 2004, Current pharmaceutical design.

[41]  Z. Ding,et al.  VirE2, a Type IV secretion substrate, interacts with the VirD4 transfer protein at cell poles of Agrobacterium tumefaciens , 2003, Molecular microbiology.

[42]  Julian Lee,et al.  Unbiased global optimization of Lennard-Jones clusters for N < or =201 using the conformational space annealing method. , 2003, Physical review letters.

[43]  Baofeng Hu,et al.  lvgA, a Novel Legionella pneumophila Virulence Factor , 2003, Infection and Immunity.

[44]  C. Parsot,et al.  The various and varying roles of specific chaperones in type III secretion systems. , 2003, Current opinion in microbiology.

[45]  A. Vergunst,et al.  Analysis of Vir protein translocation from Agrobacterium tumefaciens using Saccharomyces cerevisiae as a model: evidence for transport of a novel effector protein VirE3. , 2003, Nucleic acids research.

[46]  Fernando de la Cruz,et al.  Conjugative Plasmid Protein TrwB, an Integral Membrane Type IV Secretion System Coupling Protein , 2002, The Journal of Biological Chemistry.

[47]  Jorge E. Galán,et al.  Maintenance of an unfolded polypeptide by a cognate chaperone in bacterial type III secretion , 2001, Nature.

[48]  Nathan A. Baker,et al.  Electrostatics of nanosystems: Application to microtubules and the ribosome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[49]  D I Svergun,et al.  Determination of domain structure of proteins from X-ray solution scattering. , 2001, Biophysical journal.

[50]  Fernando de la Cruz,et al.  The bacterial conjugation protein TrwB resembles ring helicases and F1-ATPase , 2001, Nature.

[51]  A. Vergunst,et al.  VirB/D4-dependent protein translocation from Agrobacterium into plant cells. , 2000, Science.

[52]  H. Nagai,et al.  Identification of Icm protein complexes that play distinct roles in the biogenesis of an organelle permissive for Legionella pneumophila intracellular growth , 2000, Molecular microbiology.

[53]  P. Christie,et al.  Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells. , 2000, Trends in microbiology.

[54]  C. Hughes,et al.  From flagellum assembly to virulence: the extended family of type III export chaperones. , 2000, Trends in microbiology.

[55]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[56]  H. Shuman,et al.  Host cell killing and bacterial conjugation require overlapping sets of genes within a 22-kb region of the Legionella pneumophila genome. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[57]  R. Isberg,et al.  Conjugative transfer by the virulence system of Legionella pneumophila. , 1998, Science.

[58]  Jooyoung Lee,et al.  New optimization method for conformational energy calculations on polypeptides: Conformational space annealing , 1997, J. Comput. Chem..

[59]  R. Isberg,et al.  Two distinct defects in intracellular growth complemented by a single genetic locus in Legionella pneumophila , 1993, Molecular microbiology.

[60]  M. Horwitz,et al.  Identification of a Legionella pneumophila locus required for intracellular multiplication in human macrophages. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[61]  A. V. Semenyuk,et al.  GNOM – a program package for small-angle scattering data processing , 1991 .

[62]  M. Heidtman,et al.  The Legionella pneumophila replication vacuole: making a cosy niche inside host cells , 2009, Nature Reviews Microbiology.

[63]  A. Sali,et al.  Modeling of loops in protein structures , 2000, Protein science : a publication of the Protein Society.

[64]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[65]  Vincent B. Chen,et al.  PHENIX: a comprehensive Python-based system for macromolecular structure solution , 2010, Acta crystallographica. Section D, Biological crystallography.