EEG oscillations and wavelet analysis

Electroencephalographic recordings are analyzed in an event-related fashion when we want to gain insights into the relation of the electroencephalogram (EEG) and experimental events. The standard analysis method is to focus on event-related potentials (ERPs) by averaging. However, another approach is to concentrate on eventrelated oscillations (EROs). This chapter will introduce the notion of EEG oscillations and a method suited to analyze the temporal and spatial characteristics of EROs at the same time, namely the wavelet analysis. At first an introduction to oscillatory EEG activity will be given, followed by details of the wavelet analysis. Some general prerequisites of recording EROs will be reviewed and finally, recently introduced wavelet-based methods for studying dynamical interrelations between brain signals will be discussed.

[1]  Vincent J. Samar,et al.  Wavelet Analysis of Neuroelectric Waveforms , 1999, Brain and Language.

[2]  M. Paluš Detecting phase synchronization in noisy systems , 1997 .

[3]  J. Pernier,et al.  Gamma‐range Activity Evoked by Coherent Visual Stimuli in Humans , 1995, The European journal of neuroscience.

[4]  G. Pfurtscheller,et al.  Event-related dynamics of cortical rhythms: frequency-specific features and functional correlates. , 2001, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[5]  Daniel Strüber,et al.  MEG alpha activity decrease reflects destabilization of multistable percepts. , 2002, Brain research. Cognitive brain research.

[6]  Robert Galambos,et al.  A Comparison of Certain Gamma Band (40-HZ) Brain Rhythms in Cat and Man , 1992 .

[7]  W. Klimesch,et al.  Induced alpha band power changes in the human EEG and attention , 1998, Neuroscience Letters.

[8]  H. W. Veen,et al.  Handbook of Biological Physics , 1996 .

[9]  T. Sejnowski,et al.  Dynamic Brain Sources of Visual Evoked Responses , 2002, Science.

[10]  J. Martinerie,et al.  The brainweb: Phase synchronization and large-scale integration , 2001, Nature Reviews Neuroscience.

[11]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[12]  C. Elger,et al.  Human memory formation is accompanied by rhinal–hippocampal coupling and decoupling , 2001, Nature Neuroscience.

[13]  F. D. Silva Neural mechanisms underlying brain waves: from neural membranes to networks. , 1991 .

[14]  Matthias M. Müller,et al.  Human Gamma Band Activity and Perception of a Gestalt , 1999, The Journal of Neuroscience.

[15]  O Bertrand,et al.  Scalp current density fields: concept and properties. , 1988, Electroencephalography and clinical neurophysiology.

[16]  H Petsche,et al.  Synchronization between temporal and parietal cortex during multimodal object processing in man. , 1999, Cerebral cortex.

[17]  M Unser,et al.  Fast wavelet transformation of EEG. , 1994, Electroencephalography and clinical neurophysiology.

[18]  P. Nunez,et al.  Spatial filtering and neocortical dynamics: estimates of EEG coherence , 1998, IEEE Transactions on Biomedical Engineering.

[19]  E. Basar,et al.  P300-response: possible psychophysiological correlates in delta and theta frequency channels. A review. , 1992, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[20]  K. Reinikainen,et al.  Selective attention enhances the auditory 40-Hz transient response in humans , 1993, Nature.

[21]  E. Basar,et al.  Alpha oscillations in brain functioning: an integrative theory. , 1997, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[22]  T. Sejnowski,et al.  Thalamocortical oscillations in the sleeping and aroused brain. , 1993, Science.

[23]  James Theiler,et al.  Testing for nonlinearity in time series: the method of surrogate data , 1992 .

[24]  David Rudrauf,et al.  Estimating the time-course of coherence between single-trial brain signals: an introduction to wavelet coherence , 2002, Neurophysiologie Clinique/Clinical Neurophysiology.

[25]  H. Berger Über das Elektrenkephalogramm des Menschen , 1929, Archiv für Psychiatrie und Nervenkrankheiten.

[26]  Andrew C. N. Chen,et al.  Instantaneous EEG coherence analysis during the Stroop task , 1999, Clinical Neurophysiology.

[27]  J. Pernier,et al.  Stimulus Specificity of Phase-Locked and Non-Phase-Locked 40 Hz Visual Responses in Human , 1996, The Journal of Neuroscience.

[28]  R. Hari,et al.  Spatiotemporal characteristics of sensorimotor neuromagnetic rhythms related to thumb movement , 1994, Neuroscience.

[29]  C. Herrmann,et al.  Gamma responses and ERPs in a visual classification task , 1999, Clinical Neurophysiology.

[30]  E. Niedermeyer Alpha rhythms as physiological and abnormal phenomena. , 1997, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[31]  O. Bertrand,et al.  Oscillatory gamma activity in humans and its role in object representation , 1999, Trends in Cognitive Sciences.

[32]  E. Adrian Olfactory reactions in the brain of the hedgehog , 1942, The Journal of physiology.

[33]  G. Pfurtscheller,et al.  Calculation of event-related coherence—A new method to study short-lasting coupling between brain areas , 2005, Brain Topography.

[34]  R. Quian Quiroga,et al.  Single-trial event-related potentials with wavelet denoising , 2003, Clinical Neurophysiology.

[35]  E. Basar,et al.  Gamma-band responses in the brain: a short review of psychophysiological correlates and functional significance. , 1996, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[36]  F. Varela,et al.  Perception's shadow: long-distance synchronization of human brain activity , 1999, Nature.

[37]  T. V. Sewards,et al.  Alpha-band oscillations in visual cortex: part of the neural correlate of visual awareness? , 1999, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[38]  R. Eckhorn,et al.  Coherent oscillations: A mechanism of feature linking in the visual cortex? , 1988, Biological Cybernetics.

[39]  P Gloor,et al.  Brain lesions that produce delta waves in the EEG , 1977, Neurology.

[40]  M. Whittington,et al.  Gamma and beta frequency oscillations in response to novel auditory stimuli: A comparison of human electroencephalogram (EEG) data with in vitro models. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[41]  G Fein,et al.  Artifactually high coherences result from using spherical spline computation of scalp current density. , 1991, Electroencephalography and clinical neurophysiology.

[42]  W. Singer,et al.  Dynamic predictions: Oscillations and synchrony in top–down processing , 2001, Nature Reviews Neuroscience.

[43]  C. Herrmann Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena , 2001, Experimental Brain Research.

[44]  G. Pfurtscheller,et al.  Alpha frequency, cognitive load and memory performance , 1993, Brain Topography.

[45]  F. Varela,et al.  Measuring phase synchrony in brain signals , 1999, Human brain mapping.

[46]  E. Basar,et al.  Oscillatory brain theory: a new trend in neuroscience. , 1999, IEEE engineering in medicine and biology magazine : the quarterly magazine of the Engineering in Medicine & Biology Society.

[47]  J. Kurths,et al.  Phase synchronization: from theory to data analysis , 2003 .

[48]  Eugenio Rodriguez,et al.  Studying Single-Trials of phase Synchronous Activity in the Brain , 2000, Int. J. Bifurc. Chaos.

[49]  F. L. D. Silva,et al.  Basic mechanisms of cerebral rhythmic activities , 1990 .

[50]  W. Klimesch,et al.  Simultaneous desynchronization and synchronization of different alpha responses in the human electroencephalograph: a neglected paradox? , 2000, Neuroscience Letters.

[51]  M. Brandt Visual and auditory evoked phase resetting of the alpha EEG. , 1997, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[52]  D. Tucker,et al.  EEG coherency. I: Statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. , 1997, Electroencephalography and clinical neurophysiology.

[53]  Bernice Porjesz,et al.  Spatial Enhancement of Event-Related Potentials Using Multiresolution Analysis , 2004, Brain Topography.

[54]  J. Polich,et al.  EEG and ERP assessment of normal aging. , 1997, Electroencephalography and clinical neurophysiology.

[55]  J. Karhu,et al.  Theta oscillations index human hippocampal activation during a working memory task. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Dennis Gabor,et al.  Theory of communication , 1946 .

[57]  R. Knight,et al.  Mechanisms of human attention: event-related potentials and oscillations , 2001, Neuroscience & Biobehavioral Reviews.

[58]  D Yves von Cramon,et al.  Amplitude differences of evoked alpha and gamma oscillations in two different age groups. , 2002, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[59]  Jürgen Kurths,et al.  Detection of n:m Phase Locking from Noisy Data: Application to Magnetoencephalography , 1998 .

[60]  W. Klimesch EEG-alpha rhythms and memory processes. , 1997, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[61]  P. Nunez,et al.  A theoretical and experimental study of high resolution EEG based on surface Laplacians and cortical imaging. , 1994, Electroencephalography and clinical neurophysiology.

[62]  J. Le,et al.  Method to reduce blur distortion from EEG's using a realistic head model , 1993, IEEE Transactions on Biomedical Engineering.

[63]  P. Welch The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms , 1967 .

[64]  Daniel Gembris,et al.  Top-down attentional processing enhances auditory evoked gamma band activity , 2003, Neuroreport.

[65]  R. Eckhorn,et al.  Amplitude envelope correlation detects coupling among incoherent brain signals , 2000, Neuroreport.

[66]  Matthias M. Müller,et al.  Visually induced gamma‐band responses to coherent and incoherent motion: a replication study , 1997, Neuroreport.

[67]  T. Lagerlund,et al.  Interelectrode coherences from nearest-neighbor and spherical harmonic expansion computation of laplacian of scalp potential. , 1993, Electroencephalography and clinical neurophysiology.

[68]  O. Bertrand,et al.  Oscillatory Synchrony between Human Extrastriate Areas during Visual Short-Term Memory Maintenance , 2001, The Journal of Neuroscience.

[69]  J. Polich,et al.  P300 and alpha event-related desynchronization (ERD). , 2001, Psychophysiology.

[70]  G Curio,et al.  High frequency (600 Hz) bursts of spike-like activities generated in the human cerebral somatosensory system. , 1999, Electroencephalography and clinical neurophysiology. Supplement.

[71]  F. H. Lopes da Silva Neural mechanisms underlying brain waves , 1990 .

[72]  O. Jensen,et al.  Frontal theta activity in humans increases with memory load in a working memory task , 2002, The European journal of neuroscience.

[73]  J. Pernier,et al.  Oscillatory γ-Band (30–70 Hz) Activity Induced by a Visual Search Task in Humans , 1997, The Journal of Neuroscience.

[74]  R. Llinás,et al.  Coherent 40-Hz oscillation characterizes dream state in humans. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[75]  W. Singer,et al.  Visuomotor integration is associated with zero time-lag synchronization among cortical areas , 1997, Nature.

[76]  Kurths,et al.  Phase synchronization of chaotic oscillators. , 1996, Physical review letters.

[77]  Andrew C. N. Chen,et al.  Perception of pain coincides with the spatial expansion of electroencephalographic dynamics in human subjects , 2001, Neuroscience Letters.

[78]  T. Schreiber,et al.  Surrogate time series , 1999, chao-dyn/9909037.

[79]  Matthias M. Müller,et al.  The time course of cortical facilitation during cued shifts of spatial attention , 1998, Nature Neuroscience.