A nonparametric CUSUM scheme for monitoring multivariate time-between-events-and-amplitude data with application to automobile painting

Monitoring time-between-events-and-amplitude (TBEA) data, including the time interval between two successive nonconforming events and the amplitude of an event, is significant in many applications,...

[1]  Jun Yang,et al.  Distribution-free EWMA schemes for simultaneous monitoring of time between events and event magnitude , 2018, Comput. Ind. Eng..

[2]  Jianxin Jiao,et al.  A single control chart for monitoring the frequency and magnitude of an event , 2009 .

[3]  Amitava Mukherjee,et al.  A combination of max‐type and distance based schemes for simultaneous monitoring of time between events and event magnitudes , 2018, Qual. Reliab. Eng. Int..

[4]  Min Xie,et al.  Design of exponential control charts based on average time to signal using a sequential sampling scheme , 2015 .

[5]  Amitava Mukherjee,et al.  A new nonparametric scheme for simultaneous monitoring of bivariate processes and its application in monitoring service quality , 2018 .

[6]  Philippe Castagliola,et al.  A CUSUM chart for detecting the intensity ratio of negative events , 2018, Int. J. Prod. Res..

[7]  Ching-Wen Chen,et al.  Using geometric Poisson exponentially weighted moving average control schemes in a compound Poisson production environment , 2012, Comput. Ind. Eng..

[8]  Subhabrata Chakraborti,et al.  Two simple Shewhart-type multivariate nonparametric control charts , 2012 .

[9]  Peihua Qiu,et al.  Some perspectives on nonparametric statistical process control , 2018 .

[10]  Liu Liu,et al.  Adaptive nonparametric CUSUM scheme for detecting unknown shifts in location , 2014 .

[11]  Zhang Wu,et al.  A control scheme for monitoring the frequency and magnitude of an event , 2009 .

[12]  Rainer Göb,et al.  An Overview of Control Charts for High‐quality Processes , 2016, Qual. Reliab. Eng. Int..

[13]  D. Hawkins,et al.  A nonparametric multivariate cumulative sum procedure for detecting shifts in all directions , 2003 .

[14]  Peihua Qiu,et al.  Distribution-free multivariate process control based on log-linear modeling , 2008 .

[15]  Philippe Castagliola,et al.  Development of a multiattribute synthetic-np chart , 2014 .

[16]  Philippe Castagliola,et al.  A CUSUM scheme for event monitoring , 2013 .

[17]  Philippe Castagliola,et al.  Evaluation of Shewhart time‐between‐events‐and‐amplitude control charts for correlated data , 2020 .

[18]  Tsang-Chuan Chang,et al.  Quality evaluation of internal cylindrical grinding process with multiple quality characteristics for gear products , 2019, Int. J. Prod. Res..

[19]  Fugee Tsung,et al.  A spatial rank‐based multivariate EWMA control chart , 2012 .

[20]  Fah Fatt Gan,et al.  Designs of One- and Two-Sided Exponential EWMA Charts , 1998 .

[21]  Jan Kalina,et al.  Nonparametric multivariate rank tests and their unbiasedness , 2012, 1203.0450.

[22]  Min Xie,et al.  Simultaneously monitoring frequency and magnitude of events based on bivariate gamma distribution , 2017 .

[23]  Giovanni Celano,et al.  A distribution-free EWMA control chart for monitoring time-between-events-and-amplitude data , 2020 .

[24]  Min Zhang,et al.  Exponential CUSUM Charts with Estimated Control Limits , 2014, Qual. Reliab. Eng. Int..

[25]  Jun Li,et al.  Nonparametric multivariate CUSUM control charts for location and scale changes , 2013 .

[26]  Connie M. Borror,et al.  Robustness of the time between events CUSUM , 2003 .

[27]  James M. Lucas,et al.  Counted Data CUSUM's , 1985 .

[28]  Philippe Castagliola,et al.  Distribution‐free triple EWMA control chart for monitoring the process location using the Wilcoxon rank‐sum statistic with fast initial response feature , 2021, Qual. Reliab. Eng. Int..

[29]  Philippe Castagliola,et al.  Exponential cumulative sums chart for detecting shifts in time-between-events , 2018, Int. J. Prod. Res..

[30]  Peihua Qiu,et al.  On Nonparametric Statistical Process Control of Univariate Processes , 2011, Technometrics.

[31]  Philippe Castagliola,et al.  Evaluation of Shewhart time-between-events-and-amplitude control charts for several distributions , 2019, Quality Engineering.

[32]  Amitava Mukherjee,et al.  Design and implementation issues for a class of distribution-free Phase II EWMA exceedance control charts , 2017, Int. J. Prod. Res..

[33]  G. Celano,et al.  A distribution-free Shewhart-type Mann–Whitney control chart for monitoring finite horizon productions , 2020, Int. J. Prod. Res..

[34]  Yuan Cheng,et al.  One Hotelling T2 chart based on transformed data for simultaneous monitoring the frequency and magnitude of an event , 2014, 2014 IEEE International Conference on Industrial Engineering and Engineering Management.

[35]  Zhiqiong Wang,et al.  Nonparametric monitoring of multiple count data , 2019 .

[36]  Thong Ngee Goh,et al.  A control chart for the Gamma distribution as a model of time between events , 2007 .

[37]  P. Castagliola,et al.  On the performance of the adaptive EWMA chart for monitoring time between events , 2020 .

[38]  Fugee Tsung,et al.  A Multivariate Sign EWMA Control Chart , 2011, Technometrics.

[39]  Nan Chen,et al.  A Distribution-Free Multivariate Control Chart , 2016, Technometrics.

[40]  Giovanni Celano,et al.  An EWMA-type sign chart with exact run length properties , 2019, Journal of Quality Technology.

[41]  Zhang Wu,et al.  Design of the sum-of-conforming-run-length control charts , 2001, Eur. J. Oper. Res..

[42]  M. Shamsuzzaman,et al.  A combined control scheme for monitoring the frequency and size of an attribute event , 2010 .

[43]  T. Calvin,et al.  Quality Control Techniques for "Zero Defects" , 1983 .

[44]  Yajun Mei,et al.  Nonparametric monitoring of multivariate data via KNN learning , 2020, Int. J. Prod. Res..

[45]  Peihua Qiu,et al.  On Phase II SPC in Cases When Normality is Invalid , 2015, Qual. Reliab. Eng. Int..