Characterizing trees with large Laplacian energy

We investigate the problem of ordering trees according to their Laplacian energy. More precisely, given a positive integer n, we find a class of cardinality approximately p n whose elements are the n-vertex trees with largest Laplacian energy. The main tool for establishing this result is a new upper bound on the sum Sk(T) of the k largest Laplacian eigenvalues of an n-vertex tree T with diameter at least four, where k 2 f1;:::;ng.

[1]  I. Gutman,et al.  Total π-electron energy and Laplacian energy : How far the analogy goes? , 2007 .

[2]  Wenshui Lin,et al.  Ordering trees by their largest eigenvalues , 2006 .

[3]  Mei Lu,et al.  Ordering trees by their Laplacian spectral radii , 2005 .

[4]  Kexiang Xu Trees with the seven smallest and eight greatest Harary indices , 2012, Discret. Appl. Math..

[5]  H. Wielandt An extremum property of sums of eigenvalues , 1955 .

[6]  Shuchao Li,et al.  Ordering of trees with fixed matching number by the Laplacian coefficients , 2011 .

[7]  Bo Zhou,et al.  Upper bounds for the sum of Laplacian eigenvalues of graphs , 2012 .

[8]  Behruz Tayfeh-Rezaie,et al.  On the Sum of Laplacian Eigenvalues of Graphs , 2008 .

[9]  Francesco Belardo,et al.  Ordering graphs with index in the interval (2, sqrt(2+sqrt(5))) , 2008, Discret. Appl. Math..

[10]  David Pokrass Jacobs,et al.  An O(n2) Algorithm for the Characteristic Polynomial of a Tree , 2001, Electron. Notes Discret. Math..

[11]  N. Abreu Old and new results on algebraic connectivity of graphs , 2007 .

[12]  Carlos Hoppen,et al.  On the sum of the Laplacian eigenvalues of a tree , 2011 .

[13]  Oscar Rojo,et al.  Spectra of weighted generalized Bethe trees joined at the root , 2008 .

[14]  I. Gutman,et al.  Laplacian energy of a graph , 2006 .

[15]  Fuji Zhang,et al.  Ordering graphs with small index and its application , 2002, Discret. Appl. Math..

[16]  V. Trevisan,et al.  Locating the Eigenvalues of Trees , 2011 .

[17]  Willem H. Haemers,et al.  Spectra of Graphs , 2011 .

[18]  Bolian Liu,et al.  On a conjecture for the sum of Laplacian eigenvalues , 2012, Math. Comput. Model..

[19]  Carlos Uzcátegui,et al.  Randic ordering of chemical trees , 2005, Discret. Appl. Math..

[20]  Wen-Huan Wang,et al.  Ordering of the trees with a perfect matching by minimal energies , 2009 .

[21]  Vilmar Trevisan,et al.  Laplacian energy of diameter 3 trees , 2011, Appl. Math. Lett..

[22]  D. Cvetkovic,et al.  Recent Results in the Theory of Graph Spectra , 2012 .

[23]  Shu-Guang Guo Ordering trees with n vertices and matching number q by their largest Laplacian eigenvalues , 2008, Discret. Math..

[24]  Ji-Ming Guo On the minimal energy ordering of trees with perfect matchings , 2008, Discret. Appl. Math..