Doubly screened Coulomb correction approach for strongly correlated systems

Strongly correlated systems containing d/f-electrons present a challenge to conventional density functional theory (DFT), such as the widely used local density approximation (LDA) or generalized gradient approximation (GGA). In this work, we developed a doubly screened Coulomb correction (DSCC) approach to perform on-site Coulomb interaction correction for strongly correlated materials. The on-site Coulomb interaction between localized d/f-electrons is determined from a model dielectric function that includes both the static dielectric and the Thomas-Fermi screening. All parameters of the dielectric model are efficiently obtained from self-consistent calculations. We applied DSCC to simulate the electronic and magnetic properties of typical 3d, 4f and 5f strongly correlated systems. The results show that the accuracy of DSCC is comparable to hybrid functionals, but an order of magnitude faster. In addition, DSCC can reflect the difference in the Coulomb interaction of the same element between metallic and insulating situations, similar to the popular but computationally expensive constrained random phase approximation (cRPA) approach. This feature suggests that DSCC is also a promising method for simulating Coulomb interaction parameters.

[1]  Haifeng Song,et al.  Comparative study of first-principles approaches for effective Coulomb interaction strength Ueff between localized f-electrons: Lanthanide metals as an example. , 2022, The Journal of chemical physics.

[2]  N. Kaltsoyannis,et al.  DFT + U Study of Uranium Dioxide and Plutonium Dioxide with Occupation Matrix Control , 2022, The journal of physical chemistry. C, Nanomaterials and interfaces.

[3]  B. Amadon,et al.  First-principles calculation of the Coulomb interaction parameters U and J for actinide dioxides , 2021 .

[4]  Hong Jiang,et al.  Local screened Coulomb correction approach to strongly correlated d-electron systems. , 2019, The Journal of chemical physics.

[5]  M. Freyss,et al.  First-principles investigation of the bulk properties of americium dioxide and sesquioxides , 2019, Physical Review Materials.

[6]  G. Kresse,et al.  Assessing model-dielectric-dependent hybrid functionals on the antiferromagnetic transition-metal monoxides MnO, FeO, CoO, and NiO , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[7]  B. Ao,et al.  Effective Coulomb interaction in actinides from linear response approach , 2018, Computational Materials Science.

[8]  G. Rignanese,et al.  Nonempirical dielectric-dependent hybrid functional with range separation for semiconductors and insulators , 2018, Physical Review Materials.

[9]  Hong Jiang,et al.  Doubly Screened Hybrid Functional: An Accurate First-Principles Approach for Both Narrow- and Wide-Gap Semiconductors. , 2018, The journal of physical chemistry letters.

[10]  B. Amadon Erratum: First-principles DFT+DMFT calculations of structural properties of actinides: Role of Hund's exchange, spin-orbit coupling, and crystal structure [Phys. Rev. B 94, 115148 (2016)] , 2018 .

[11]  M. Storr,et al.  DFT+U study of the structures and properties of the actinide dioxides , 2017 .

[12]  Bernard Amadon,et al.  First-principles DFT+DMFT calculations of structural properties of actinides: Role of Hund's exchange, spin-orbit coupling, and crystal structure , 2016 .

[13]  Piotr M. Kowalski,et al.  DFT + U as a reliable method for efficient ab initio calculations of nuclear materials ☆ , 2016 .

[14]  G. Galli,et al.  Nonempirical range-separated hybrid functionals for solids and molecules , 2016, 1605.02812.

[15]  Hong Jiang First-principles approaches for strongly correlated materials: A theoretical chemistry perspective , 2015 .

[16]  K. Ho,et al.  Phase Diagram and Electronic Structure of Praseodymium and Plutonium , 2015 .

[17]  Graeme W Watson,et al.  Occupation matrix control of d- and f-electron localisations using DFT + U. , 2014, Physical chemistry chemical physics : PCCP.

[18]  G. Galli,et al.  Self-consistent hybrid functional for condensed systems , 2014, 1501.03184.

[19]  M. Schlipf,et al.  Structural, electronic, and magnetic properties of the europium chalcogenides: A hybrid-functional DFT study , 2013 .

[20]  Stefano de Gironcoli,et al.  Hubbard‐corrected DFT energy functionals: The LDA+U description of correlated systems , 2013, 1309.3355.

[21]  Richard L. Martin,et al.  Density functional theory studies of the electronic structure of solid state actinide oxides. , 2013, Chemical reviews.

[22]  G. Scuseria,et al.  Optical band gap of NpO2 and PuO2 from optical absorbance of epitaxial films , 2013 .

[23]  袁勋,et al.  Screened Coulomb interactions of localized electrons in transition metals and transition-metal oxides , 2012 .

[24]  Matthias Scheffler,et al.  Electronic properties of lanthanide oxides from the GW perspective , 2012 .

[25]  T. Nishi,et al.  Core-hole effect on XANES and electronic structure of minor actinide dioxides with fluorite structure , 2012 .

[26]  I. D. Marco,et al.  Phonon spectrum, thermodynamic properties, and pressure-temperature phase diagram of uranium dioxide , 2012, 1201.5003.

[27]  Á. Rubio,et al.  Role of nonlocal exchange in the electronic structure of correlated oxides , 2012, 1201.3308.

[28]  Stefano de Gironcoli,et al.  Vibrational properties of MnO and NiO from DFT +U-based density functional perturbation theory , 2011 .

[29]  Micael J. T. Oliveira,et al.  Density-based mixing parameter for hybrid functionals , 2010, 1009.4303.

[30]  Shyue Ping Ong,et al.  Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds , 2010 .

[31]  T. Nishi,et al.  NMR Evidence for the 8.5 K Phase Transition in Americium Dioxide , 2010 .

[32]  Donald G Truhlar,et al.  Density functional theory for transition metals and transition metal chemistry. , 2009, Physical chemistry chemical physics : PCCP.

[33]  Bernard Amadon,et al.  DFT+U calculations of the ground state and metastable states of uranium dioxide , 2009 .

[34]  M. Scheffler,et al.  Localized and itinerant states in lanthanide oxides united by GW @ LDA+U. , 2009, Physical review letters.

[35]  J. Q. Shen,et al.  Electronic structure and magnetism of EuX (X = O, S, Se and Te): A first-principles investigation , 2008 .

[36]  Emily A. Carter,et al.  Challenges in Modeling Materials Properties Without Experimental Input , 2008, Science.

[37]  G. Laan,et al.  Nature of the 5f states in actinide metals , 2008, 0807.0416.

[38]  R. Orlando,et al.  Coupled perturbed Kohn-Sham calculation of static polarizabilities of periodic compounds , 2008 .

[39]  F. Jollet,et al.  γandβcerium:LDA+Ucalculations of ground-state parameters , 2008 .

[40]  R. Scalettar,et al.  Collapse of magnetic moment drives the Mott transition in MnO. , 2008, Nature materials.

[41]  V. Anisimov,et al.  Construction and solution of a Wannier-functions based Hamiltonian in the pseudopotential plane-wave framework for strongly correlated materials , 2008, 0801.3500.

[42]  K. Hermansson,et al.  Tuning LDA+U for electron localization and structure at oxygen vacancies in ceria. , 2007, The Journal of chemical physics.

[43]  P. Misra Heavy-Fermion systems , 2007 .

[44]  X. Dai,et al.  LDA + Gutzwiller method for correlated electron systems , 2007, 0707.4606.

[45]  Georg Kresse,et al.  Hybrid functionals applied to rare-earth oxides: The example of ceria , 2007 .

[46]  V. Anisimov,et al.  Local correlations and hole doping in NiO: A dynamical mean-field study , 2006, cond-mat/0612116.

[47]  Peter Blaha,et al.  Hybrid exchange-correlation energy functionals for strongly correlated electrons: Applications to transition-metal monoxides , 2006 .

[48]  K. Tomiyasu,et al.  Magnetic Excitations in CoO , 2006 .

[49]  X. Ren,et al.  LDA+DMFT computation of the electronic spectrum of NiO , 2006, cond-mat/0606285.

[50]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[51]  W. Pickett,et al.  Exact exchange for correlated electrons , 2006 .

[52]  F. Bechstedt,et al.  Linear optical properties in the projector-augmented wave methodology , 2006 .

[53]  M. V. Ganduglia-Pirovano,et al.  Comment on “Taming multiple valency with density functionals: A case study of defective ceria” , 2005 .

[54]  Stefano de Gironcoli,et al.  Reply to “Comment on ‘Taming multiple valency with density functionals: A case study of defective ceria' ” , 2005 .

[55]  C. Marianetti,et al.  Electronic structure calculations with dynamical mean-field theory , 2005, cond-mat/0511085.

[56]  R. Arita,et al.  First-principles calculation of effective onsite Coulomb interactions of 3d transition metals : Constrained local density functional approach with maximally localized Wannier functions , 2005, cond-mat/0510425.

[57]  G. Scuseria,et al.  Lattice defects and magnetic ordering in plutonium oxides: a hybrid density-functional-theory study of strongly correlated materials. , 2005, The Journal of chemical physics.

[58]  Stefano de Gironcoli,et al.  Linear response approach to the calculation of the effective interaction parameters in the LDA + U method , 2004, cond-mat/0405160.

[59]  A. Georges,et al.  Frequency-dependent local interactions and low-energy effective models from electronic structure calculations , 2004, cond-mat/0401620.

[60]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[61]  Richard L. Martin,et al.  Hybrid density-functional theory and the insulating gap of UO2. , 2002, Physical review letters.

[62]  O. Eriksson,et al.  Crystal-field levels and magnetic susceptibility in PuO2 , 2002 .

[63]  G. Kotliar,et al.  Correlated electrons in δ-plutonium within a dynamical mean-field picture , 2001, Nature.

[64]  M. Alouani,et al.  Implementation of the projector augmented-wave LDA+U method: Application to the electronic structure of NiO , 2000, cond-mat/0003182.

[65]  W. Pickett,et al.  IMPLEMENTATION OF THE LDA+U METHOD USING THE FULL-POTENTIAL LINEARIZED AUGMENTED PLANE-WAVE BASIS , 1999, cond-mat/9903439.

[66]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[67]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[68]  M. Katsnelson,et al.  Ab initio calculations of quasiparticle band structure in correlated systems: LDA++ approach , 1997, cond-mat/9707127.

[69]  Kieron Burke,et al.  The adiabatic connection method: a non-empirical hybrid , 1997 .

[70]  K. Burke,et al.  Rationale for mixing exact exchange with density functional approximations , 1996 .

[71]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[72]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[73]  A. Prokofiev,et al.  Periodicity in the band gap variation of Ln2X3 (X = O, S, Se) in the lanthanide series , 1996 .

[74]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[75]  J. Zaanen,et al.  Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. , 1995, Physical review. B, Condensed matter.

[76]  F. Bechstedt,et al.  Screening models and simplified GW approaches: Si & GaN as test cases , 1995 .

[77]  Gunnarsson,et al.  Electronic structure of NiO in the GW approximation. , 1995, Physical review letters.

[78]  Massidda,et al.  Band-structure picture for MnO reexplored: A model GW calculation. , 1995, Physical review letters.

[79]  Norman Calculation of effective Coulomb interaction for Pr3+, U4+, and UPt3. , 1995, Physical review. B, Condensed matter.

[80]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[81]  Sawatzky,et al.  Local-density functional and on-site correlations: The electronic structure of La2CuO4 and LaCuO3. , 1994, Physical review. B, Condensed matter.

[82]  G. Sawatzky,et al.  Density-functional theory and NiO photoemission spectra. , 1993, Physical review. B, Condensed matter.

[83]  Cappellini,et al.  Model dielectric function for semiconductors. , 1993, Physical review. B, Condensed matter.

[84]  Akio Kotani,et al.  Systematic Analysis of Core Photoemission Spectra for Actinide Di-Oxides and Rare-Earth Sesqui-Oxides , 1992 .

[85]  Kuiper,et al.  Electronic structure of CoO, Li-doped CoO, and LiCoO2. , 1991, Physical review. B, Condensed matter.

[86]  V. Anisimov,et al.  Band theory and Mott insulators: Hubbard U instead of Stoner I. , 1991, Physical review. B, Condensed matter.

[87]  A. Taylor,et al.  High-resolution neutron spectroscopy of crystal-field excitations in uranium dioxide , 1988 .

[88]  James R. Morris,et al.  Neutron inelastic experiments on actinide dioxides: Search for crystal‐field levels in NpO2 , 1988 .

[89]  J. Thompson,et al.  MAGNETISM OF ACTINIDE COMPOUNDS , 1987 .

[90]  A. Mauger,et al.  The magnetic, optical, and transport properties of representatives of a class of magnetic semiconductors: The europium chalcogenides , 1986 .

[91]  Stefan Blügel,et al.  Ground States of Constrained Systems: Application to Cerium Impurities , 1984 .

[92]  S. Hüfner,et al.  Photoemission and inverse photoemission spectroscopy of NiO , 1984 .

[93]  Kiyoyuki Terakura,et al.  Band theory of insulating transition-metal monoxides: Band-structure calculations , 1984 .

[94]  B. Delley,et al.  Spectroscopic Evidence for Localized and Extended F-Symmetry States in Ceo2 , 1984 .

[95]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[96]  B. Hennion,et al.  Low-energy magnetic excitations in wustite ( Fe 1 − x O ) , 1978 .

[97]  J. Als-Nielsen,et al.  Neutron scattering from the Heisenberg ferromagnets EuO and EuS. II. Static critical properties , 1976 .

[98]  R. Shanker,et al.  Analysis of the Exchange Parameters and Magnetic Properties of NiO , 1973 .

[99]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[100]  L. Hedin NEW METHOD FOR CALCULATING THE ONE-PARTICLE GREEN'S FUNCTION WITH APPLICATION TO THE ELECTRON-GAS PROBLEM , 1965 .

[101]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[102]  Aron Walsh,et al.  A first-principles investigation , 2011 .

[103]  F. Parmigiani,et al.  Fine structures in the X-ray photoemission spectra of MnO, FeO, CoO, and NiO single crystals , 1999 .

[104]  G. Lander,et al.  CRYSTAL-FIELD TRANSITION IN PUO2 , 1999 .

[105]  G. Lander,et al.  The solid-state properties of uranium A historical perspective and review , 1994 .

[106]  Kimura,et al.  Electronic structure of MnO. , 1990, Physical review. B, Condensed matter.

[107]  G. Pépy Spin waves in MnO; from 4°K to temperatures close to TN , 1974 .

[108]  V. Jain Single Crystals * , 2022 .