Modeling of Parkinson's Disease Using Fuzzy Cognitive Maps and Non-Linear Hebbian Learning
暂无分享,去创建一个
[1] Jean J. Saade,et al. A unifying approach to defuzzification and comparison of the outputs of fuzzy controllers , 1996, IEEE Trans. Fuzzy Syst..
[2] James R. Nolan. A Conceptual Model For An Intelligent Fuzzy Decision Support System , 1997 .
[3] Thomas A. Runkler,et al. Selection of appropriate defuzzification methods using application specific properties , 1997, IEEE Trans. Fuzzy Syst..
[4] Elpiniki I. Papageorgiou,et al. Analyzing the performance of fuzzy cognitive maps with non-linear hebbian learning algorithm in predicting autistic disorder , 2011, Expert Syst. Appl..
[5] Panagiota Spyridonos,et al. Brain tumor characterization using the soft computing technique of fuzzy cognitive maps , 2008, Appl. Soft Comput..
[6] Chrysostomos D. Stylios,et al. Fuzzy Cognitive Map Learning Based on Nonlinear Hebbian Rule , 2003, Australian Conference on Artificial Intelligence.
[7] Chrysostomos D. Stylios,et al. Modeling complex systems using fuzzy cognitive maps , 2004, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.
[8] Chrysostomos D. Stylios,et al. Modelling supervisory control systems using fuzzy cognitive maps , 2000 .
[9] Peter P. Groumpos,et al. A theoretical mathematical modeling of Parkinson's disease using Fuzzy Cognitive Maps , 2012, 2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE).
[10] Juan J. Nieto,et al. Fuzzy Logic in Medicine and Bioinformatics , 2006, Journal of biomedicine & biotechnology.
[11] Peter P. Groumpos,et al. Fuzzy Cognitive Maps: Basic Theories and Their Application to Complex Systems , 2010 .
[12] Chrysostomos D. Stylios,et al. Active Hebbian learning algorithm to train fuzzy cognitive maps , 2004, Int. J. Approx. Reason..