Maths, Computation and Flamenco: Overview and Challenges

Flamenco is a rich performance-oriented art music genre from Southern Spain which attracts a growing community of aficionados around the globe. Due to its improvisational and expressive nature, its unique musical characteristics, and the fact that the genre is largely undocumented, flamenco poses a number of interesting mathematical and computational challenges. Most existing approaches in Musical Information Retrieval (MIR) were developed in the context of popular or classical music and do often not generalize well to non-Western music traditions, in particular when the underlying music theoretical assumptions do not hold for these genres. Over the recent decade, a number of computational problems related to the automatic analysis of flamenco music have been defined and several methods addressing a variety of musical aspects have been proposed. This paper provides an overview of the challenges which arise in the context of computational analysis of flamenco music and outlines an overview of existing approaches.

[1]  Luis Barba,et al.  Asymmetric polygons with maximum area , 2015, Eur. J. Oper. Res..

[2]  José Miguel Díaz-Báñez,et al.  Discovery of repeated vocal patterns in polyphonic audio: A case study on flamenco music , 2015, 2015 23rd European Signal Processing Conference (EUSIPCO).

[3]  José Miguel Díaz-Báñez,et al.  Modelling melodic variation and extracting melodic templates from flamenco singing performances , 2019, Journal of Mathematics and Music.

[4]  Emilia Gómez,et al.  FlaBase: Towards the Creation of a Flamenco Music Knowledge Base , 2015, ISMIR.

[5]  Emilia Gómez,et al.  Towards Computer-Assisted Flamenco Transcription: An Experimental Comparison of Automatic Transcription Algorithms as Applied to A Cappella Singing , 2013, Computer Music Journal.

[6]  José Miguel Díaz-Báñez,et al.  Characterization and Similarity in A Cappella Flamenco Cantes , 2010, ISMIR.

[7]  Nadine Kroher Flamenco music information retrieval , 2018 .

[8]  José Miguel Díaz-Báñez,et al.  Audio-Based Melody Categorization: Exploring Signal Representations and Evaluation Strategies , 2017, Computer Music Journal.

[9]  José Miguel Díaz-Báñez,et al.  Efficient algorithms for melodic similarity in flamenco singing , 2015 .

[10]  Benjamin Schrauwen,et al.  Deep content-based music recommendation , 2013, NIPS.

[11]  Charlotte Truchet,et al.  Computation of words satisfying the "rhythmic oddity property" (after Simha Arom's works) , 2003, Inf. Process. Lett..

[12]  Emilia Gómez,et al.  Melodic Transcription of Flamenco Singing from Monophonic and Polyphonic Music Recordings , 2012 .

[13]  Godfried T. Toussaint,et al.  Similaridad y evolución en la rítmica del flamenco: una incursión de la matemática computacional , 2005 .

[14]  Sebastian Böck,et al.  Improved musical onset detection with Convolutional Neural Networks , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[15]  Godfried T. Toussaint,et al.  Measuring Similarity between Flamenco Rhythmic Patterns , 2009 .

[16]  J. Díaz-Báñez,et al.  Mathematics and Flamenco: An Unexpected Partnership , 2017 .

[17]  Jae-Hun Kim,et al.  Deep Convolutional Neural Networks for Predominant Instrument Recognition in Polyphonic Music , 2016, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[18]  José Miguel Díaz-Báñez,et al.  Finding Unknown Nodes in Phylogenetic Graphs , 2015, IWBBIO.

[19]  Nadine Kroher,et al.  Discovery of Repeated Melodic Phrases in Folk Singing Recordings , 2018, IEEE Transactions on Multimedia.

[20]  Carlos Ochoa,et al.  Characterization of Extremal Antipodal Polygons , 2015, Graphs Comb..

[21]  Emilia Gómez,et al.  Automatic Transcription of Flamenco Singing From Polyphonic Music Recordings , 2016, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[22]  Sergey Bereg,et al.  Computing melodic templates in oral music traditions , 2019, Appl. Math. Comput..

[23]  José Miguel Díaz-Báñez,et al.  Tracking Melodic Patterns in Flamenco Singing by Analyzing Polyphonic Music Recordings , 2012, ISMIR.

[24]  José Miguel Díaz-Báñez,et al.  Melodic Contour and Mid-Level Global Features Applied to the Analysis of Flamenco Cantes , 2015, ArXiv.

[25]  José Miguel Díaz-Báñez,et al.  An Efficient DTW-Based Approach for Melodic Similarity in Flamenco Singing , 2014, SISAP.

[26]  José Miguel Díaz-Báñez,et al.  Corpus COFLA , 2016, ACM Journal on Computing and Cultural Heritage.