Immobilization of pH-sensitive CdTe Quantum Dots in a Poly(acrylate) Hydrogel for Microfluidic Applications

[1]  E. Cho,et al.  Dual-responsive and Multi-functional Plasmonic Hydrogel Valves and Biomimetic Architectures Formed with Hydrogel and Gold Nanocolloids , 2016, Scientific Reports.

[2]  S. Odenbach,et al.  Smart hydrogels as storage elements with dispensing functionality in discontinuous microfluidic systems. , 2016, Lab on a chip.

[3]  A. Richter,et al.  Integrated Microfluidic Membrane Transistor Utilizing Chemical Information for On-Chip Flow Control , 2016, PloS one.

[4]  T. Behnke,et al.  pH and concentration dependence of the optical properties of thiol-capped CdTe nanocrystals in water and D2O. , 2016, Physical chemistry chemical physics : PCCP.

[5]  S. Siegmund,et al.  Autonomous Chemical Oscillator Circuit Based on Bidirectional Chemical‐Microfluidic Coupling , 2016 .

[6]  O. Bieri,et al.  Improved Muscle Function in Duchenne Muscular Dystrophy through L-Arginine and Metformin: An Investigator-Initiated, Open-Label, Single-Center, Proof-Of-Concept-Study , 2016, PloS one.

[7]  Gerard H. Gaynor Solving Problems , 2016, IEEE Engineering Management Review.

[8]  A. Eychmüller,et al.  Influence of the stabilizing ligand on the quality, signal-relevant optical properties, and stability of near-infrared emitting Cd1−xHgxTe nanocrystals , 2014 .

[9]  S. Recknagel,et al.  Experimental and theoretical investigations of the ligand structure of water-soluble CdTe nanocrystals. , 2013, Dalton transactions.

[10]  L. Ionov,et al.  Stimuli-responsive hierarchically self-assembled 3D porous polymer-based structures with aligned pores. , 2013, Journal of materials chemistry. B.

[11]  Vânia F. Pais,et al.  Information processing with molecules--Quo vadis? , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[12]  Optical properties of photo- and thermo-responsive aqueous CdTe quantum dots/spironaphthoxazine/poly(N-isopropylacrylamide) hybrid. , 2012, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[13]  Andreas Richter,et al.  Fluidic microchemomechanical integrated circuits processing chemical information. , 2012, Lab on a chip.

[14]  Jörg P. Kutter,et al.  Gold nanoparticle-based optical microfluidic sensors for analysis of environmental pollutants. , 2012, Lab on a chip.

[15]  Gang Liu,et al.  A Portable and Power-Free Microfluidic Device for Rapid and Sensitive Lead (Pb2+) Detection , 2012, Sensors.

[16]  Y. Rakovich,et al.  Hybrid organic/inorganic semiconductor nanostructures with highly efficient energy transfer , 2012 .

[17]  Lei Shen Biocompatible Polymer/Quantum Dots Hybrid Materials: Current Status and Future Developments , 2011, Journal of functional biomaterials.

[18]  Ulrich J. Krull,et al.  Biosensing with Quantum Dots: A Microfluidic Approach , 2011, Sensors.

[19]  H. Möhwald,et al.  Stimuli-responsive LbL capsules and nanoshells for drug delivery. , 2011, Advanced drug delivery reviews.

[20]  Hao Zhang,et al.  pH-sensitive photoluminescence for aqueous thiol-capped CdTe nanocrystals , 2011, Nanotechnology.

[21]  G. Vancso,et al.  Nanostructured thermoresponsive quantum dot/PNIPAM assemblies , 2010 .

[22]  Masataka Kinjo,et al.  A quantum dot-based ratiometric pH sensor. , 2010, Chemical communications.

[23]  Vladimir V. Tsukruk,et al.  pH-responsive photoluminescent LbL hydrogels with confined quantum dots , 2010 .

[24]  George Whitesides,et al.  Solving problems. , 2010, Lab on a chip.

[25]  Christian Blum,et al.  Temperature-modulated quenching of quantum dots covalently coupled to chain ends of poly(N-isopropyl acrylamide) brushes on gold , 2009, Nanotechnology.

[26]  Nikodem Tomczak,et al.  Designer polymer–quantum dot architectures , 2009 .

[27]  Karl-Friedrich Arndt,et al.  Hydrogel Sensors and Actuators , 2009 .

[28]  G. Sukhorukov,et al.  On the mechanical stability of polymeric microcontainers functionalized with nanoparticles , 2009 .

[29]  pH-dependent aggregation and photoluminescence behavior of thiol-capped CdTe quantum dots in aqueous solutions , 2008 .

[30]  V. Cimrová,et al.  Switchable photoluminescence of CdTe nanocrystals by temperature-responsive microgels. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[31]  Jens Lienig,et al.  Review on Hydrogel-based pH Sensors and Microsensors , 2008, Sensors.

[32]  Frank Simon,et al.  Covalent immobilization of quantum dots on macroscopic surfaces using poly(acrylic acid) brushes , 2008 .

[33]  Zhengtao Deng,et al.  Green and orange CdTe quantum dots as effective pH-sensitive fluorescent probes for dual simultaneous and independent detection of viruses. , 2007, The journal of physical chemistry. B.

[34]  U. Krull,et al.  Luminescence and stability of aqueous thioalkyl acid capped CdSe/ZnS quantum dots correlated to ligand ionization. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[35]  S. Quake,et al.  A Systems Approach to Measuring the Binding Energy Landscapes of Transcription Factors , 2007, Science.

[36]  Andreas Manz,et al.  Scaling and the design of miniaturized chemical-analysis systems , 2006, Nature.

[37]  G. Whitesides The origins and the future of microfluidics , 2006, Nature.

[38]  A. Rogach,et al.  Luminescent CdTe nanocrystals as ion probes and pH sensors in aqueous solutions , 2006 .

[39]  Leonid Ionov,et al.  Fast and Spatially Resolved Environmental Probing Using Stimuli‐Responsive Polymer Layers and Fluorescent Nanocrystals , 2006 .

[40]  A. Manz,et al.  Lab-on-a-chip: microfluidics in drug discovery , 2006, Nature Reviews Drug Discovery.

[41]  Jagjit Nanda,et al.  Effect of the thiol-thiolate equilibrium on the photophysical properties of aqueous CdSe/ZnS nanocrystal quantum dots. , 2005, Journal of the American Chemical Society.

[42]  Igor L. Medintz,et al.  Quantum dot bioconjugates for imaging, labelling and sensing , 2005, Nature materials.

[43]  Chad A Mirkin,et al.  Nanostructures in biodiagnostics. , 2005, Chemical reviews.

[44]  Xiaogang Peng,et al.  Size-dependent dissociation pH of thiolate ligands from cadmium chalcogenide nanocrystals. , 2005, Journal of the American Chemical Society.

[45]  Y. Liu,et al.  Highly Photoluminescent CdTe/Poly(N‐isopropylacrylamide) Temperature‐Sensitive Gels , 2005 .

[46]  C. Holding Lab on a chip , 2004, Genome Biology.

[47]  Mingyuan Gao,et al.  The Influence of Carboxyl Groups on the Photoluminescence of Mercaptocarboxylic Acid-Stabilized CdTe Nanoparticles , 2003 .

[48]  S. Quake,et al.  Microfluidic Large-Scale Integration , 2002, Science.

[49]  Nikolai Gaponik,et al.  THIOL-CAPPING OF CDTE NANOCRYSTALS: AN ALTERNATIVE TO ORGANOMETALLIC SYNTHETIC ROUTES , 2002 .

[50]  Andreas Richter,et al.  Application of sensitive hydrogels in flow control , 2000 .

[51]  Robin H. Liu,et al.  Functional hydrogel structures for autonomous flow control inside microfluidic channels , 2000, Nature.

[52]  Alexander Eychmüller,et al.  Strongly Photoluminescent CdTe Nanocrystals by Proper Surface Modification , 1998 .

[53]  A. Manz,et al.  Miniaturized total chemical analysis systems: A novel concept for chemical sensing , 1990 .

[54]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .