A Fast T&H Overcurrent Detector for a Spinning Hall Current Sensor With Ping-Pong and Chopping Techniques

This paper presents a fast spinning-current Hall sensor with 568 ns overall delay for sub-microsecond overcurrent detection (OCD) in a magnetic current sensor. By combining the continuous-time chopping techniques and discrete-time dynamic offset cancellation techniques, the spinning frequency of 250 kHz does not limit the sensor speed. The proposed track-and-hold (T&H) ping-pong comparators extend the usage of auto-zeroing techniques for sensor interface applications. The design achieves a magnetic residual offset of <inline-formula> <tex-math notation="LaTeX">$85~\mu \text{T}$ </tex-math></inline-formula> (mean) and <inline-formula> <tex-math notation="LaTeX">$79~\mu \text{T}$ </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">$1\sigma$ </tex-math></inline-formula>), while the offset drifts only <inline-formula> <tex-math notation="LaTeX">$0.68~\mu \text{T}/^{\circ }\text{C}$ </tex-math></inline-formula> (mean) and <inline-formula> <tex-math notation="LaTeX">$0.27~\mu \text{T}/^{\circ }\text{C}$ </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">$1\sigma$ </tex-math></inline-formula>) from −40 °C to 150 °C. In addition, a background switched-capacitor filter breaks the limitation of high-frequency errors on conventional correlated double sampling techniques. The design thus reduces the input-referred noise to <inline-formula> <tex-math notation="LaTeX">$136~\mu \text{T}_{\mathrm {rms}}$ </tex-math></inline-formula> with a bandwidth of 1.7 MHz, while consuming at least 30% less power than the other state-of-the-art designs. Moreover, the analog stress compensation with temperature coefficient (TC) correction guarantees an overall threshold error within ±4% over package stress and temperature.

[1]  Kofi A. A. Makinwa,et al.  A Hybrid Multi-Path CMOS Magnetic Sensor With 76 ppm/°C Sensitivity Drift and Discrete-Time Ripple Reduction Loops , 2017, IEEE Journal of Solid-State Circuits.

[2]  A. Bilotti,et al.  Monolithic magnetic Hall sensor using dynamic quadrature offset cancellation , 1997, IEEE J. Solid State Circuits.

[3]  J.H. Huijsing,et al.  A chopper and auto-zero offset-stabilized CMOS instrumentation amplifier , 2009, 2009 Symposium on VLSI Circuits.

[4]  Kofi A. A. Makinwa,et al.  Multipath Wide-Bandwidth CMOS Magnetic Sensors , 2017, IEEE Journal of Solid-State Circuits.

[5]  Mario Motz,et al.  Electrical Compensation of Mechanical Stress Drift in Precision Analog Circuits , 2017 .

[6]  Long Xu,et al.  A ±4A high-side current sensor with 25V input CM range and 0.9% gain error from −40°C to 85°C using an analog temperature compensation technique , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[7]  Cyril Condemine,et al.  A low power 16-channel fully integrated GMR-based current sensor , 2012, 2012 Proceedings of the ESSCIRC (ESSCIRC).

[8]  S. Ziegler,et al.  Current Sensing Techniques: A Review , 2009, IEEE Sensors Journal.

[9]  D. Draxelmayr,et al.  A dynamic differential Hall IC with current interface for automotive sensor applications , 1997, 1997 IEEE International Solids-State Circuits Conference. Digest of Technical Papers.

[10]  Alberto Bilotti,et al.  Chopper-stabilized amplifiers with a track-and-hold signal demodulator , 1999 .

[11]  Wilko J. Kindt,et al.  A 140 dB-CMRR Current-Feedback Instrumentation Amplifier Employing Ping-Pong Auto-Zeroing and Chopping , 2010, IEEE Journal of Solid-State Circuits.

[12]  Chong-Gun Yu,et al.  An automatic offset compensation scheme with ping-pong control for CMOS operational amplifiers , 1994 .

[13]  Mario Motz,et al.  A dual vertical Hall latch with direction detection , 2013, 2013 Proceedings of the ESSCIRC (ESSCIRC).

[14]  Kofi A. A. Makinwa,et al.  A continuous-time ripple reduction technique for spinning-current Hall sensors , 2013, 2013 Proceedings of the ESSCIRC (ESSCIRC).

[15]  Mario Motz,et al.  A Signal and Offset T&H Frontend for Spinning Hall Sensors with Ping-Pong and Chopping Techniques , 2018, ESSCIRC 2018 - IEEE 44th European Solid State Circuits Conference (ESSCIRC).

[16]  P.-A. Besse,et al.  Micro-Hall devices: performance, technologies and applications , 2003 .

[17]  Kofi A. A. Makinwa,et al.  A Current-Feedback Instrumentation Amplifier With a Gain Error Reduction Loop and 0.06% Untrimmed Gain Error , 2011, IEEE J. Solid State Circuits.

[18]  B. Schaffer,et al.  A miniature digital current sensor with differential Hall probes using enhanced chopping techniques and mechanical stress compensation , 2012, 2012 IEEE Sensors.

[19]  Samuel Huber,et al.  A Fully Integrated Analog Compensation for the Piezo-Hall Effect in a CMOS Single-Chip Hall Sensor Microsystem , 2015, IEEE Sensors Journal.

[20]  Mario Motz,et al.  Continuous-Time ∆Σ-Converters and Stress Compensation Capability , 2006 .

[21]  Kofi A. A. Makinwa,et al.  A 1.8 $\mu$ W 60 nV$/\surd$ Hz Capacitively-Coupled Chopper Instrumentation Amplifier in 65 nm CMOS for Wireless Sensor Nodes , 2011, IEEE Journal of Solid-State Circuits.

[22]  P.J.A. Munter A low-offset spinning-current hall plate , 1990 .

[23]  M. Pastre,et al.  A Hall Sensor Analog Front End for Current Measurement With Continuous Gain Calibration , 2005, IEEE Sensors Journal.

[24]  D. Draxelmayr,et al.  A chopped Hall sensor with small jitter and programmable "True Power-on" function , 2005, IEEE Journal of Solid-State Circuits.

[25]  Gabor C. Temes,et al.  Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization , 1996, Proc. IEEE.

[26]  R. J. Kansy,et al.  Response of a correlated double sampling circuit to 1/f noise , 1980 .

[27]  Zhichao Tan,et al.  A Fully Isolated Delta-Sigma ADC for Shunt Based Current Sensing , 2016, IEEE J. Solid State Circuits.

[28]  Kaushik Rajashekara,et al.  Power Electronics and Motor Drives in Electric, Hybrid Electric, and Plug-In Hybrid Electric Vehicles , 2008, IEEE Transactions on Industrial Electronics.