On the Grothendieck–Serre conjecture for classical groups

We prove some new cases of the Grothendieck–Serre conjecture for classical groups. This is based on a new construction of the Gersten–Witt complex for Witt groups of Azumaya algebras with involution on regular semilocal rings, with explicit second residue maps; the complex is shown to be exact when the ring is of dimension ⩽2$\leqslant 2$ (or ⩽4$\leqslant 4$ , with additional hypotheses on the algebra with involution). Note that we do not assume that the ring contains a field.

[1]  Uriya A. First An 8-periodic exact sequence of Witt groups of Azumaya algebras with involution , 2019, manuscripta mathematica.

[2]  N. Guo THE GROTHENDIECK–SERRE CONJECTURE OVER SEMILOCAL DEDEKIND RINGS , 2019, Transformation Groups.

[3]  Stefan Gille A hermitian analog of a quadratic form theorem of Springer , 2019, manuscripta mathematica.

[4]  I. Panin ON GROTHENDIECK–SERRE CONJECTURE CONCERNING PRINCIPAL BUNDLES , 2019, Proceedings of the International Congress of Mathematicians (ICM 2018).

[5]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[6]  Jeremy Jacobson Cohomological invariants for quadratic forms over local rings , 2018 .

[7]  J. Tignol,et al.  Involutions and stable subalgebras , 2016, 1610.06321.

[8]  Uriya A. First,et al.  On the number of generators of a separable algebra over a finite field , 2017, 1709.06982.

[9]  Uriya A. First,et al.  On the number of generators of an algebra , 2016, 1610.08156.

[10]  Katharina Weiss,et al.  Lectures On Modules And Rings , 2016 .

[11]  Uriya A. First,et al.  Rationally Isomorphic Hermitian Forms and Torsors of Some Non-Reductive Groups , 2015, 1506.07147.

[12]  Uriya A. First Rings that are Morita equivalent to their opposites , 2013, 1305.5139.

[13]  Uriya A. First General bilinear forms , 2013, 1303.0697.

[14]  I. Panin,et al.  A proof of the Grothendieck–Serre conjecture on principal bundles over regular local rings containing infinite fields , 2012, 1211.2678.

[15]  Uriya A. First Witt's Extension Theorem for Quadratic Spaces over Semiperfect Rings , 2014, 1408.0522.

[16]  I. Panin Proof of Grothendieck--Serre conjecture on principal bundles over regular local rings containing a finite field , 2014, 1406.0247.

[17]  Uriya A. First,et al.  Hermitian Categories, Extension Of Scalars And Systems Of Sesquilinear Forms , 2013, 1304.6888.

[18]  I. Panin,et al.  On Grothendieck–Serre's conjecture concerning principal -bundles over reductive group schemes: II , 2009, Compositio Mathematica.

[19]  Stefan Gille On coherent hermitian Witt groups , 2013 .

[20]  Asher Auel,et al.  QUADRIC SURFACE BUNDLES OVER SURFACES , 2012, 1207.4105.

[21]  M. Mazur,et al.  On the smallest number of generators and the probability of generating an algebra , 2010, 1001.2873.

[22]  V. Chernousov Variations on a Theme of Groups Splitting by a Quadratic Extension and Grothendieck-Serre Conjecture for Group Schemes F4 with Trivial g3 Invariant , 2010 .

[23]  Stefan Gille A Gersten-Witt complex for hermitian Witt groups of coherent algebras over schemes II: Involution of the second kind , 2009 .

[24]  Stefan Gille A Gersten–Witt complex for hermitian Witt groups of coherent algebras over schemes, I: Involution of the first kind , 2007, Compositio Mathematica.

[25]  Stefan Gille A graded Gersten–Witt complex for schemes with a dualizing complex and the Chow group , 2007 .

[26]  R. Preeti,et al.  Shifted Witt groups of semi-local rings , 2005 .

[27]  M. Mahmoudi,et al.  EXACT SEQUENCES OF WITT GROUPS , 2005 .

[28]  M. Ojanguren,et al.  On the norm principle for quadratic forms , 2003, math/0311473.

[29]  C. Walter,et al.  A Gersten–Witt spectral sequence for regular schemes , 2002 .

[30]  I. Panin,et al.  The Gersten conjecture for Witt groups in the equicharacteristic case , 2002, Documenta Mathematica.

[31]  M. Ojanguren,et al.  Rationally trivial hermitian spaces are locally trivial , 2001 .

[32]  Paul Balmer Witt Cohomology, Mayer–Vietoris, Homotopy Invariance and the Gersten Conjecture , 2001 .

[33]  Paul Balmer TRIANGULAR WITT GROUPS. PART I : THE 12-TERM LOCALIZATION EXACT SEQUENCE. , 2000 .

[34]  David J. Saltman,et al.  Lectures on Division Algebras , 1999 .

[35]  B. Keller On the cyclic homology of exact categories , 1999 .

[36]  K. Zainoulline ON GROTHENDIECK'S CONJECTURE ABOUT PRINCIPAL HOMOGENEOUS SPACES FOR SOME CLASSICAL ALGEBRAIC GROUPS , 1999, math/9902132.

[37]  E. Bayer-Fluckiger,et al.  Galois cohomology of the classical groups over fields of cohomological dimension≦2 , 1995 .

[38]  M. Raghunathan Principal bundles admitting a rational section , 1994 .

[39]  P. M. Cohn,et al.  QUADRATIC AND HERMITIAN FORMS OVER RINGS , 1993 .

[40]  W. Bruns,et al.  Cohen-Macaulay rings , 1993 .

[41]  J. Colliot-Thélène,et al.  Espaces principaux homogènes localement triviaux , 1992 .

[42]  Max-Albert Knus,et al.  Quadratic and Hermitian Forms over Rings , 1991 .

[43]  E. Bayer-Fluckiger Forms in odd degree extensions and self-dual normal bases , 1990 .

[44]  Miles Reid,et al.  Commutative Ring Theory , 1989 .

[45]  M. Carral,et al.  Quadratic and λ-hermitian forms , 1989 .

[46]  W. Pardon A relation between Witt groups and zero-cycles in a regular ring , 1984 .

[47]  D. W. Lewis New improved exact sequences of Witt groups , 1982 .

[48]  M. Ojanguren Unités représentées par des formes quadratiques ou par des normes réduites , 1982 .

[49]  W. Pardon A "gersten conjecture" for witt groups , 1982 .

[50]  M. Ojanguren Quadratic forms over regular rings , 1980 .

[51]  H. Quebbemann,et al.  Quadratic and Hermitian Forms in Additive and Abelian Categories , 1979 .

[52]  J. Colliot-Thélène,et al.  Fibrés quadratiques et composantes connexes réelles , 1979 .

[53]  D. Saltman Azumaya algebras with involution , 1978 .

[54]  W. Scharlau Zur Pfisterschen Theorie der quadratischen Formen , 1969 .

[55]  Séminaire Bourbaki,et al.  Dix exposés sur la cohomologie des schémas , 1968 .

[56]  A. Grothendieck Le groupe de Brauer , 1966 .

[57]  A. Hattori,et al.  SEPARABLE -ALGEBRAS , 2022 .