On the Grothendieck–Serre conjecture for classical groups
暂无分享,去创建一个
[1] Uriya A. First. An 8-periodic exact sequence of Witt groups of Azumaya algebras with involution , 2019, manuscripta mathematica.
[2] N. Guo. THE GROTHENDIECK–SERRE CONJECTURE OVER SEMILOCAL DEDEKIND RINGS , 2019, Transformation Groups.
[3] Stefan Gille. A hermitian analog of a quadratic form theorem of Springer , 2019, manuscripta mathematica.
[4] I. Panin. ON GROTHENDIECK–SERRE CONJECTURE CONCERNING PRINCIPAL BUNDLES , 2019, Proceedings of the International Congress of Mathematicians (ICM 2018).
[5] W. Hager,et al. and s , 2019, Shallow Water Hydraulics.
[6] Jeremy Jacobson. Cohomological invariants for quadratic forms over local rings , 2018 .
[7] J. Tignol,et al. Involutions and stable subalgebras , 2016, 1610.06321.
[8] Uriya A. First,et al. On the number of generators of a separable algebra over a finite field , 2017, 1709.06982.
[9] Uriya A. First,et al. On the number of generators of an algebra , 2016, 1610.08156.
[10] Katharina Weiss,et al. Lectures On Modules And Rings , 2016 .
[11] Uriya A. First,et al. Rationally Isomorphic Hermitian Forms and Torsors of Some Non-Reductive Groups , 2015, 1506.07147.
[12] Uriya A. First. Rings that are Morita equivalent to their opposites , 2013, 1305.5139.
[13] Uriya A. First. General bilinear forms , 2013, 1303.0697.
[14] I. Panin,et al. A proof of the Grothendieck–Serre conjecture on principal bundles over regular local rings containing infinite fields , 2012, 1211.2678.
[15] Uriya A. First. Witt's Extension Theorem for Quadratic Spaces over Semiperfect Rings , 2014, 1408.0522.
[16] I. Panin. Proof of Grothendieck--Serre conjecture on principal bundles over regular local rings containing a finite field , 2014, 1406.0247.
[17] Uriya A. First,et al. Hermitian Categories, Extension Of Scalars And Systems Of Sesquilinear Forms , 2013, 1304.6888.
[18] I. Panin,et al. On Grothendieck–Serre's conjecture concerning principal -bundles over reductive group schemes: II , 2009, Compositio Mathematica.
[19] Stefan Gille. On coherent hermitian Witt groups , 2013 .
[20] Asher Auel,et al. QUADRIC SURFACE BUNDLES OVER SURFACES , 2012, 1207.4105.
[21] M. Mazur,et al. On the smallest number of generators and the probability of generating an algebra , 2010, 1001.2873.
[22] V. Chernousov. Variations on a Theme of Groups Splitting by a Quadratic Extension and Grothendieck-Serre Conjecture for Group Schemes F4 with Trivial g3 Invariant , 2010 .
[23] Stefan Gille. A Gersten-Witt complex for hermitian Witt groups of coherent algebras over schemes II: Involution of the second kind , 2009 .
[24] Stefan Gille. A Gersten–Witt complex for hermitian Witt groups of coherent algebras over schemes, I: Involution of the first kind , 2007, Compositio Mathematica.
[25] Stefan Gille. A graded Gersten–Witt complex for schemes with a dualizing complex and the Chow group , 2007 .
[26] R. Preeti,et al. Shifted Witt groups of semi-local rings , 2005 .
[27] M. Mahmoudi,et al. EXACT SEQUENCES OF WITT GROUPS , 2005 .
[28] M. Ojanguren,et al. On the norm principle for quadratic forms , 2003, math/0311473.
[29] C. Walter,et al. A Gersten–Witt spectral sequence for regular schemes , 2002 .
[30] I. Panin,et al. The Gersten conjecture for Witt groups in the equicharacteristic case , 2002, Documenta Mathematica.
[31] M. Ojanguren,et al. Rationally trivial hermitian spaces are locally trivial , 2001 .
[32] Paul Balmer. Witt Cohomology, Mayer–Vietoris, Homotopy Invariance and the Gersten Conjecture , 2001 .
[33] Paul Balmer. TRIANGULAR WITT GROUPS. PART I : THE 12-TERM LOCALIZATION EXACT SEQUENCE. , 2000 .
[34] David J. Saltman,et al. Lectures on Division Algebras , 1999 .
[35] B. Keller. On the cyclic homology of exact categories , 1999 .
[36] K. Zainoulline. ON GROTHENDIECK'S CONJECTURE ABOUT PRINCIPAL HOMOGENEOUS SPACES FOR SOME CLASSICAL ALGEBRAIC GROUPS , 1999, math/9902132.
[37] E. Bayer-Fluckiger,et al. Galois cohomology of the classical groups over fields of cohomological dimension≦2 , 1995 .
[38] M. Raghunathan. Principal bundles admitting a rational section , 1994 .
[39] P. M. Cohn,et al. QUADRATIC AND HERMITIAN FORMS OVER RINGS , 1993 .
[40] W. Bruns,et al. Cohen-Macaulay rings , 1993 .
[41] J. Colliot-Thélène,et al. Espaces principaux homogènes localement triviaux , 1992 .
[42] Max-Albert Knus,et al. Quadratic and Hermitian Forms over Rings , 1991 .
[43] E. Bayer-Fluckiger. Forms in odd degree extensions and self-dual normal bases , 1990 .
[44] Miles Reid,et al. Commutative Ring Theory , 1989 .
[45] M. Carral,et al. Quadratic and λ-hermitian forms , 1989 .
[46] W. Pardon. A relation between Witt groups and zero-cycles in a regular ring , 1984 .
[47] D. W. Lewis. New improved exact sequences of Witt groups , 1982 .
[48] M. Ojanguren. Unités représentées par des formes quadratiques ou par des normes réduites , 1982 .
[49] W. Pardon. A "gersten conjecture" for witt groups , 1982 .
[50] M. Ojanguren. Quadratic forms over regular rings , 1980 .
[51] H. Quebbemann,et al. Quadratic and Hermitian Forms in Additive and Abelian Categories , 1979 .
[52] J. Colliot-Thélène,et al. Fibrés quadratiques et composantes connexes réelles , 1979 .
[53] D. Saltman. Azumaya algebras with involution , 1978 .
[54] W. Scharlau. Zur Pfisterschen Theorie der quadratischen Formen , 1969 .
[55] Séminaire Bourbaki,et al. Dix exposés sur la cohomologie des schémas , 1968 .
[56] A. Grothendieck. Le groupe de Brauer , 1966 .
[57] A. Hattori,et al. SEPARABLE -ALGEBRAS , 2022 .