Online ultrasound image guidance for radiotherapy of prostate cancer: impact of image acquisition on prostate displacement.

AIM Numerous studies reported the use of ultrasound image-guidance system to assess and correct patient setup during radiotherapy for prostate cancer. We conducted a study to demonstrate and quantify prostate displacement resulting from pressure of the probe on the abdomen during transabdominal ultrasound image acquisition for prostate localization. MATERIAL AND METHODS Ten healthy volunteers were asked to undergo one imaging procedure. The procedure was performed in a condition that simulates the localization of prostate during online ultrasound guidance. A 3D ultrasound machine was used. The procedure started with the placement of the probe on the abdomen above the pubis symphysis. The probe was tilted in a caudal and posterior direction until the prostate and seminal vesicle were visualized. The probe was then fixed with a rigid arm, which maintained the probe in a static position during image acquisition. The probe was then moved, in a short time, stepwise toward the prostate, acquiring images at each step. The prostate and seminal vesicles were identified and selected in all planes. The first 3D volume was used as reference 1, to which all other scans were matched using a gray value matching algorithm. RESULTS Prostate motion was quantified as a 3D translation relative to the patient coordinate system. The resulting translations represented the amount of prostate movement as a function of probe displacement. Between 7 and 11 images were obtained per volunteer, with a maximal probe displacement ranging between 3 and 6 cm. Prostate displacement was measured in all volunteers for all the probe steps and in all directions. The largest displacements occurred in the posterior direction in all volunteers. The absolute prostate motion was less than 5 mm in 100% of the volunteers after 1 cm of probe displacement, in 80% after 1.5 cm, in 40% after 2 cm, in 10% after 2.5 cm, and 0% after 3 cm. To achieved a good-quality ultrasound images, the probe requires an average displacement of 1.2 cm, and this results in an average prostate displacement of 3.1 mm. No correlations were observed between prostate motion and prostate-probe distance or bladder size. CONCLUSION Probe pressure during ultrasound image acquisition causes prostate displacement, which is correlated to the amount of probe displacement from initial contact. The induced uncertainty associated with this process needs to be carefully evaluated to determine a safe margin to be employed during online ultrasound image-guided radiotherapy of the prostate.

[1]  D P Dearnaley,et al.  Evaluating the effect of rectal distension and rectal movement on prostate gland position using cine MRI. , 1999, International journal of radiation oncology, biology, physics.

[2]  P. Bergström,et al.  High-precision conformal radiotherapy (HPCRT) of prostate cancer--a new technique for exact positioning of the prostate at the time of treatment. , 1998, International journal of radiation oncology, biology, physics.

[3]  William R. Fair,et al.  DOSE ESCALATION WITH THREE-DIMENSIONAL CONFORMAL RADIATION THERAPY AFFECTS THE OUTCOME IN PROSTATE CANCER , 1998 .

[4]  K Lam,et al.  Measurement of prostate movement over the course of routine radiotherapy using implanted markers. , 1995, International journal of radiation oncology, biology, physics.

[5]  M van Herk,et al.  Quantification of organ motion during conformal radiotherapy of the prostate by three dimensional image registration. , 1995, International journal of radiation oncology, biology, physics.

[6]  M van Herk,et al.  Automatic three-dimensional inspection of patient setup in radiation therapy using portal images, simulator images, and computed tomography data. , 1996, Medical physics.

[7]  P Cinquin,et al.  Conformal external radiotherapy of prostatic carcinoma: requirements and experimental results. , 1993, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[8]  T E Schultheiss,et al.  A comparison of daily CT localization to a daily ultrasound-based system in prostate cancer. , 1999, International journal of radiation oncology, biology, physics.

[9]  D A Jaffray,et al.  A radiographic and tomographic imaging system integrated into a medical linear accelerator for localization of bone and soft-tissue targets. , 1999, International journal of radiation oncology, biology, physics.

[10]  A Bel,et al.  High-precision prostate cancer irradiation by clinical application of an offline patient setup verification procedure, using portal imaging. , 1996, International journal of radiation oncology, biology, physics.

[11]  Gary A Ezzell,et al.  Initial experience with ultrasound localization for positioning prostate cancer patients for external beam radiotherapy. , 2001, International journal of radiation oncology, biology, physics.

[12]  P. Remeijer,et al.  Set-up verification using portal imaging; review of current clinical practice. , 2001, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[13]  J Bijhold,et al.  Maximizing setup accuracy using portal images as applied to a conformal boost technique for prostatic cancer. , 1992, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[14]  T R Willoughby,et al.  Short-course intensity-modulated radiotherapy for localized prostate cancer with daily transabdominal ultrasound localization of the prostate gland. , 2000, International journal of radiation oncology, biology, physics.

[15]  Tanya M Powell,et al.  Independent prostate motion as measured by daily BAT ultrasound and electronic portal imaging , 2001 .

[16]  J. Wong,et al.  Flat-panel cone-beam computed tomography for image-guided radiation therapy. , 2002, International journal of radiation oncology, biology, physics.

[17]  K L Lam,et al.  Automated localization of the prostate at the time of treatment using implanted radiopaque markers: technical feasibility. , 1995, International journal of radiation oncology, biology, physics.

[18]  R. Pötter,et al.  The influence of a rectal balloon tube as internal immobilization device on variations of volumes and dose-volume histograms during treatment course of conformal radiotherapy for prostate cancer. , 2002, International journal of radiation oncology, biology, physics.

[19]  J. Tsai,et al.  Implementation and utility of a daily ultrasound-based localization system with intensity-modulated radiotherapy for prostate cancer. , 2002, International journal of radiation oncology, biology, physics.

[20]  C C Ling,et al.  High dose radiation delivered by intensity modulated conformal radiotherapy improves the outcome of localized prostate cancer. , 2001, The Journal of urology.

[21]  M van Herk,et al.  A general methodology for three-dimensional analysis of variation in target volume delineation. , 1999, Medical physics.

[22]  G J Kutcher,et al.  Measurement of patient positioning errors in three-dimensional conformal radiotherapy of the prostate. , 1997, International journal of radiation oncology, biology, physics.

[23]  Randall K Ten Haken,et al.  Daily prostate targeting using implanted radiopaque markers. , 2001, International journal of radiation oncology, biology, physics.

[24]  T E Schultheiss,et al.  Daily CT localization for correcting portal errors in the treatment of prostate cancer. , 1998, International journal of radiation oncology, biology, physics.

[25]  A. Hanlon,et al.  Ultrasound-based stereotactic guidance of precision conformal external beam radiation therapy in clinically localized prostate cancer. , 2000, Urology.

[26]  M van Herk,et al.  A verification procedure to improve patient set-up accuracy using portal images. , 1993, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[27]  T E Schultheiss,et al.  Dose escalation with 3D conformal treatment: five year outcomes, treatment optimization, and future directions. , 1998, International journal of radiation oncology, biology, physics.