Proposition of a Silica Nanoparticle-Enhanced Hybrid Spin-Microcantilever Sensor Using Nonlinear Optics for Detection of DNA in Liquid

We theoretically propose a method based on the combination of a nonlinear optical mass sensor using a hybrid spin-microcantilever and the nanoparticle-enhanced technique, to detect and monitor DNA mutations. The technique theoretically allows the mass of external particles (ssDNA) landing on the surface of a hybrid spin-microcantilever to be detected directly and accurately at 300 K with a mass responsivity 0.137 Hz/ag in situ in liquid. Moreover, combined with the nanoparticle-enhanced technique, even only one base pair mutation in the target DNA sequence can be identified in real time accurately, and the DNA hybridization reactions can be monitored quantitatively. Furthermore, in situ detection in liquid and measurement of the proposed nonlinear optical spin resonance spectra will minimize the experimental errors.

[1]  E. Oort,et al.  Electric-field-induced modulation of spin echoes of N-V centers in diamond , 1990 .

[2]  L. J. Sham,et al.  Supporting Online Material for Coherent Optical Spectroscopy of a Strongly Driven Quantum Dot , 2007 .

[3]  B. Muzykantskii,et al.  ON QUANTUM NOISE , 1995 .

[4]  K. Zhu,et al.  Hybrid spin-microcantilever sensor for environmental, chemical, and biological detection , 2015, Nanotechnology.

[5]  Kimberly L. Turner,et al.  Comparison of parametric and linear mass detection in the presence of detection noise , 2011 .

[6]  D. Rugar,et al.  Frequency modulation detection using high‐Q cantilevers for enhanced force microscope sensitivity , 1991 .

[7]  M. Roukes,et al.  Noise processes in nanomechanical resonators , 2002 .

[8]  M. Roukes,et al.  Toward single-molecule nanomechanical mass spectrometry , 2005, Nature nanotechnology.

[9]  M. V. Gurudev Dutt,et al.  Strong Magnetic Coupling Between an Electronic Spin Qubit and a Mechanical Resonator , 2008, 0806.3606.

[10]  J. Fritz Cantilever biosensors. , 2008, The Analyst.

[11]  Ka-Di Zhu,et al.  All-optical mass sensing with coupled mechanical resonator systems , 2013 .

[12]  P. Appel,et al.  Resolved sidebands in a strain-coupled hybrid spin-oscillator system , 2014, 1403.3405.

[13]  Marco Lazzarino,et al.  Fast detection of biomolecules in diffusion-limited regime using micromechanical pillars. , 2011, ACS nano.

[14]  P. Appel,et al.  Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator. , 2014, Physical review letters.

[15]  Vinayak P. Dravid,et al.  Microcantilever resonance-based DNA detection with nanoparticle probes , 2003 .

[16]  Kenneth W. Lee,et al.  Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator , 2014, Nature communications.

[17]  L. Hollenberg,et al.  Electric-field sensing using single diamond spins , 2011 .

[18]  P. Ovartchaiyapong,et al.  High quality factor single-crystal diamond mechanical resonators , 2012 .

[19]  Tobias J. Kippenberg,et al.  Optomechanically Induced Transparency , 2010, Science.

[20]  C. Mirkin,et al.  Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. , 2002, Science.

[21]  R. Hanson,et al.  Diamond NV centers for quantum computing and quantum networks , 2013 .

[22]  H. Rothuizen,et al.  Translating biomolecular recognition into nanomechanics. , 2000, Science.

[23]  J. Tetienne,et al.  Magnetometry with nitrogen-vacancy defects in diamond , 2013, Reports on progress in physics. Physical Society.

[24]  Aleksandr Simonian,et al.  Biosensor technology: recent advances in threat agent detection and medicine. , 2013, Chemical Society reviews.

[25]  V. Giovannetti,et al.  Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion , 2000, quant-ph/0006084.

[26]  M. Roukes,et al.  Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems , 2003, physics/0309075.

[27]  M. Roukes,et al.  Comparative advantages of mechanical biosensors. , 2011, Nature nanotechnology.

[28]  D Budker,et al.  Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond. , 2009, Physical review letters.

[29]  E. A. Ilin,et al.  Tailoring the interface of hybrid microresonators in viscid fluids enhances their quality factor by two orders of magnitude. , 2012, Lab on a chip.

[30]  K. Jensen,et al.  An atomic-resolution nanomechanical mass sensor. , 2008, Nature Nanotechnology.

[31]  J. Chaste,et al.  A nanomechanical mass sensor with yoctogram resolution. , 2012, Nature nanotechnology.

[32]  Mani Hossein-Zadeh,et al.  Sub-pg mass sensing and measurement with an optomechanical oscillator. , 2013, Optics express.

[33]  C. Degen,et al.  Single-crystal diamond nanomechanical resonators with quality factors exceeding one million , 2012, Nature Communications.

[34]  D Budker,et al.  Temperature- and magnetic-field-dependent longitudinal spin relaxation in nitrogen-vacancy ensembles in diamond. , 2011, Physical review letters.

[35]  P. Zoller,et al.  A quantum spin transducer based on nanoelectromechanical resonator arrays , 2009, 0908.0316.

[36]  Tae Song Kim,et al.  Detection of Hepatitis B Virus (HBV) DNA at femtomolar concentrations using a silica nanoparticle-enhanced microcantilever sensor. , 2009, Biosensors & bioelectronics.

[37]  M. Calleja,et al.  Biosensors Based on Nanomechanical Systems , 2013 .

[38]  H. Craighead,et al.  Micro- and nanomechanical sensors for environmental, chemical, and biological detection. , 2007, Lab on a chip.

[39]  Thomas Faust,et al.  Nonlinear switching dynamics in a nanomechanical resonator , 2009, 0909.3698.

[40]  H. Craighead,et al.  Enumeration of DNA molecules bound to a nanomechanical oscillator. , 2005, Nano letters.

[41]  Stefano Bianco,et al.  Development of microcantilever-based biosensor array to detect Angiopoietin-1, a marker of tumor angiogenesis. , 2010, Biosensors & bioelectronics.

[42]  Javier Tamayo,et al.  Arrays of dual nanomechanical resonators for selective biological detection. , 2009, Analytical chemistry.

[43]  Maira Amezcua,et al.  Quantum Optics , 2012 .