Quaternions and special relativity

We reformulate Special Relativity by a quaternionic algebra on reals. Using real linear quaternions, we show that previous difficulties, concerning the appropriate transformations on the 3+1 space–time, may be overcome. This implies that a complexified quaternionic version of Special Relativity is a choice and not a necessity.

[1]  Cliff Hooker,et al.  The Logico-Algebraic Approach to Quantum Mechanics , 1975 .

[2]  Ronald Anderson,et al.  Quaternions and the heuristic role of mathematical structures in physics , 1992, hep-ph/9208222.

[3]  R. Penrose,et al.  Spinors and Space–Time: Subject and author index , 1984 .

[4]  J. F. Cornwell Group theory in physics , 1984 .

[5]  M. Kervaire,et al.  NON-PARALLELIZABILITY OF THE n-SPHERE FOR n > 7. , 1958, Proceedings of the National Academy of Sciences of the United States of America.

[6]  S. Altmann Rotations, Quaternions, and Double Groups , 1986 .

[7]  R. Leighton,et al.  The Feynman Lectures on Physics; Vol. I , 1965 .

[8]  William Rowan Hamilton,et al.  Elements of Quaternions , 1969 .

[9]  Aharon Razon,et al.  Uniqueness of the scalar product in the tensor product of quaternion Hilbert modules , 1992 .

[10]  R. Gilmore,et al.  Lie Groups, Lie Algebras, and Some of Their Applications , 1974 .

[11]  S. De Leo,et al.  Representations ofU(1,q) and constructive quaternion tensor products , 1995 .

[12]  Erik Deumens Quaternionic quantum mechanics and quantum fields. By Stephen L,. Adler, International Series of Monographs on Physics 88, Oxford University Press, 1995. ISBN 0‐19‐506643‐X , 1996 .

[13]  A quaternion representation of the Lorentz group for classical physical applications , 1991 .

[14]  L. Horwitz,et al.  Quaternion Quantum Mechanics: Second Quantization and Gauge Fields , 1984 .

[15]  P. Dirac Quantised Singularities in the Electromagnetic Field , 1931 .

[16]  P. Rotelli THE DIRAC EQUATION ON THE QUATERNION FIELD , 1989 .

[17]  Stefano De Leo Quaternions for GUTs , 1996 .

[18]  S. Leo,et al.  Translations between Quaternion and Complex Quantum Mechanics , 1994, hep-th/9401009.

[19]  S. Leo One component Dirac equation , 1995, hep-th/9508010.