A Reexamination of Phosphorus and Chlorine Depletions in the Diffuse Interstellar Medium

We present a comprehensive examination of interstellar P and Cl abundances based on an analysis of archival spectra acquired with the Space Telescope Imaging Spectrograph of the Hubble Space Telescope and the Far Ultraviolet Spectroscopic Explorer. Column densities of P ii, Cl i, and Cl ii are determined for a combined sample of 107 sight lines probing diffuse atomic and molecular gas in the local Galactic interstellar medium. We reevaluate the nearly linear relationship between the column densities of Cl i and H2, which arises from the rapid conversion of Cl+ to Cl0 in regions where H2 is abundant. Using the observed total gas-phase P and Cl abundances, we derive depletion parameters for these elements, adopting the methodology of Jenkins. We find that both P and Cl are essentially undepleted along sight lines showing the lowest overall depletions. Increasingly severe depletions of P are seen along molecule-rich sight lines. In contrast, gas-phase Cl abundances show no systematic variation with molecular hydrogen fraction. However, enhanced Cl (and P) depletion rates are found for a subset of sight lines showing elevated levels of Cl ionization. An analysis of neutral chlorine fractions yields estimates for the amount of atomic hydrogen associated with the H2-bearing gas in each direction. These results indicate that the molecular fraction in the H2-bearing gas is at least 10% for all sight lines with logN(H2)≳18 and that the gas is essentially fully molecular at logN(H2)≈21 .

[1]  B. Fegley,et al.  Solar system abundances and condensation temperatures of the halogens fluorine, chlorine, bromine, and iodine , 2023, Geochemistry.

[2]  M. Barlow,et al.  The efficiency of grain growth in the diffuse interstellar medium , 2021, Monthly Notices of the Royal Astronomical Society.

[3]  Heidelberg,et al.  Estimating distances from parallaxes. V: Geometric and photogeometric distances to 1.47 billion stars in Gaia Early Data Release 3. , 2020, 2012.05220.

[4]  D. York,et al.  HD 62542: Probing the Bare, Dense Core of a Translucent Interstellar Cloud , 2020, The Astrophysical Journal.

[5]  S. Federman,et al.  Lifetimes and Oscillator Strengths for Ultraviolet Transitions in Neutral Chlorine , 2019, The Astrophysical Journal.

[6]  E. Jenkins,et al.  A Closer Look at Some Gas-phase Depletions in the ISM: Trends for O, Ge, and Kr versus , f(H2), and Starlight Intensity , 2019, The Astrophysical Journal.

[7]  T. Henning,et al.  Iron and Silicate Dust Growth in the Galactic Interstellar Medium: Clues from Element Depletions , 2018, 1803.01929.

[8]  S. Federman,et al.  Abundances and Depletions of Neutron-capture Elements in the Interstellar Medium , 2018, The Astrophysical Journal Supplement Series.

[9]  L. Verstraete,et al.  The global dust modelling framework THEMIS (The Heterogeneous dust Evolution Model for Interstellar Solids) , 2017, 1703.00775.

[10]  S. Bromley,et al.  Dust formation in the oxygen-rich AGB star IK Tauri , 2015, 1509.07613.

[11]  P. Noterdaeme,et al.  Neutral chlorine and molecular hydrogen at high redshift , 2015, 1501.07165.

[12]  A. Sarangi,et al.  Condensation of dust in the ejecta of Type II-P supernovae , 2014, 1412.5522.

[13]  K. Ohnaka,et al.  New insights into the dust formation of oxygen-rich AGB stars , 2013, 1310.1924.

[14]  A. Hibbert,et al.  E1 oscillator strengths and transition rates among levels of Cl I , 2013 .

[15]  H. Gail,et al.  Seed particle formation for silicate dust condensation by SiO nucleation , 2013, 1305.2879.

[16]  U. Sheffield,et al.  Interstellar TiII in the Milky Way and Magellanic Clouds , 2010, 1001.3687.

[17]  D. York,et al.  Molecular Hydrogen in the FUSE Translucent Lines of Sight: The Full Sample , 2008, 0809.3831.

[18]  N. Abel,et al.  Ultraviolet Survey of CO and H2 in Diffuse Molecular Clouds: The Reflection of Two Photochemistry Regimes in Abundance Relationships , 2008, 0807.0940.

[19]  T. Snow,et al.  A Study of the ρ Ophiuchi Cloud: Mapping the Distribution and the Motions of Interstellar Gas , 2008 .

[20]  A. Jensen,et al.  The Variation of Magnesium Depletion with Line-of-Sight Conditions , 2007, 0710.1064.

[21]  T. Snow,et al.  New Insights on Interstellar Gas-Phase Iron , 2007, 0710.1062.

[22]  B. Williams,et al.  Spitzer Space Telescope Observations of Kepler’s Supernova Remnant: A Detailed Look at the Circumstellar Dust Component , 2007, astro-ph/0703660.

[23]  S. Federman,et al.  Oscillator Strengths for Ultraviolet Transitions in P II , 2007, The Astrophysical Journal.

[24]  T. Snow,et al.  The Abundance of Interstellar Fluorine and Its Implications , 2006, astro-ph/0611066.

[25]  S. Friedman,et al.  Chlorine in the Galactic ISM: Revised f-values with FUSE and STIS , 2006, astro-ph/0609132.

[26]  C. Fischer,et al.  Relativistic energy levels, lifetimes, and transition probabilities for the sodium-like to argon-like sequences , 2006 .

[27]  D. York,et al.  Abundances and Behavior of 12CO, 13CO, and C2 in Translucent Sight Lines , 2006, astro-ph/0608557.

[28]  J. Lauroesch,et al.  The Homogeneity of Interstellar Elemental Abundances in the Galactic Disk , 2005, astro-ph/0512312.

[29]  A. Hibbert,et al.  Transitions in Mn ii of astrophysical importance , 2005 .

[30]  V. Lebouteiller,et al.  Phosphorus in the diffuse interstellar medium , 2005, astro-ph/0507404.

[31]  N. D. Gibson,et al.  Oscillator Strengths for Ultraviolet Transitions in Cl II and Cl III , 2005 .

[32]  V. Smith,et al.  Far Ultraviolet Spectroscopic Explorer Measurements of Interstellar Fluorine , 2004, astro-ph/0410362.

[33]  K. Gordon,et al.  Ultraviolet Extinction Properties in the Milky Way , 2004, astro-ph/0408409.

[34]  D. Morton,et al.  Atomic Data for Resonance Absorption Lines. III. Wavelengths Longward of the Lyman Limit for the Elements Hydrogen to Gallium , 2003 .

[35]  J. Lauroesch,et al.  The Homogeneity of Interstellar Oxygen in the Galactic Disk , 2003, astro-ph/0406385.

[36]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[37]  S. Tayal Oscillator Strengths of Allowed and Intercombination Lines in P II , 2003 .

[38]  D. York,et al.  A FUSE Survey of Interstellar Molecular Hydrogen in Translucent Clouds , 2002, astro-ph/0205415.

[39]  D. York,et al.  Abundances and Physical Conditions in the Interstellar Gas toward HD 192639 , 2002, astro-ph/0205403.

[40]  J. Lauroesch,et al.  Space Telescope Imaging Spectrograph Observations of Interstellar Oxygen and Krypton in Translucent Clouds , 2001 .

[41]  D. York,et al.  A Far Ultraviolet Spectroscopic Explorer Survey of Interstellar Molecular Hydrogen in the Small and Large Magellanic Clouds , 2001, astro-ph/0110262.

[42]  J. Weingartner,et al.  Interstellar Depletion onto Very Small Dust Grains , 1998, astro-ph/9812469.

[43]  D. Welty,et al.  A High-Resolution Survey of Interstellar K I Absorption , 1996 .

[44]  A. Tielens,et al.  Grain destruction in shocks in the interstellar medium , 1994 .

[45]  S. Federman,et al.  Accurate oscillator strengths for interstellar ultraviolet lines of Cl I , 1993 .

[46]  B. Savage,et al.  The analysis of apparent optical depth profiles for interstellar absorption lines , 1991 .

[47]  J. Black,et al.  The photodissociation and chemistry of interstellar CO , 1988 .

[48]  A. Hibbert Transitions in P II , 1988 .

[49]  B. Savage,et al.  Abundances of interstellar atoms from ultaviolet absorption lines , 1986 .

[50]  A. Harris,et al.  The abundance of interstellar chlorine in the galaxy , 1984 .

[51]  Ralph C. Bohlin,et al.  A survey of ultraviolet interstellar absorption lines , 1983 .

[52]  D. York,et al.  The detection of interstellar fluorine in the line of sight toward Delta Scorpii , 1981 .

[53]  E. Dwek,et al.  The evolution of refractory interstellar grains in the solar neighborhood , 1980 .

[54]  B. Savage,et al.  A survey of interstellar H I from L-alpha absorption measurements. II , 1978 .

[55]  D. York,et al.  Observations of interstellar chlorine and phosphorus , 1978 .

[56]  R. C. Bohlin,et al.  A survey of interstellar molecular hydrogen. I , 1977 .

[57]  M. Jura Chlorine-bearing molecules in interstellar clouds , 1974 .

[58]  L. Hobbs On Ionization in H i Regions , 1974 .