Polymeric Nanocomposites and Nanocoatings for Food Packaging: A Review

Special properties of the polymeric nanomaterials (nanoscale size, large surface area to mass ratio and high reactivity individualize them in food packaging materials. They can be processed in precisely engineered materials with multifunctional and bioactive activity. This review offers a general view on polymeric nanocomposites and nanocoatings including classification, preparation methods, properties and short methodology of characterization, applications, selected types of them used in food packaging field and their antimicrobial, antioxidant, biological, biocatalyst and so forth, functions.

[1]  J. Bras,et al.  Charge density modification of carboxylated cellulose nanocrystals for stable silver nanoparticles suspension preparation , 2015, Journal of Nanoparticle Research.

[2]  S. Srebnik,et al.  Mean-field model of immobilized enzymes embedded in a grafted polymer layer. , 2005, Biophysical journal.

[3]  Wenwen Huang,et al.  Polymorphic regenerated silk fibers assembled through bioinspired spinning , 2017, Nature Communications.

[4]  Marta Martínez-Sanz,et al.  Optimization of the dispersion of unmodified bacterial cellulose nanowhiskers into polylactide via melt compounding to significantly enhance barrier and mechanical properties. , 2012, Biomacromolecules.

[5]  A. Dufresne,et al.  Thermoplastic Nanocomposites Filled With Wheat Straw Cellulose Whiskers. Part II: Effect of Processing and Modeling , 1997 .

[6]  J. Goddard,et al.  Controlling lipid oxidation of food by active packaging technologies. , 2013, Food & function.

[7]  W. Visessanguan,et al.  Antimicrobial activity of lauric arginate-coated polylactic acid films against Listeria monocytogenes and Salmonella typhimurium on cooked sliced ham. , 2012, Journal of food science.

[8]  Y. Lvov,et al.  Layer-by-layer enzyme/polyelectrolyte films as a functional protective barrier in oxidizing media. , 2006, Journal of the American Chemical Society.

[9]  Pierre Picouet,et al.  Metallic-based micro and nanocomposites in food contact materials and active food packaging , 2012 .

[10]  J. Goddard,et al.  Biocatalytic polymer nanofibers for stabilization and delivery of enzymes , 2014 .

[11]  Thomas J. Pinnavaia,et al.  Polymer-layered silicate nanocomposites: an overview , 1999 .

[12]  Congming Xiao,et al.  Starch-based completely biodegradable polymer materials , 2009 .

[13]  Chérifa Remili,et al.  Photodegradation of Poly(Lactic Acid)/Organo-Modified Clay Nanocomposites under Natural Weathering Exposure , 2013 .

[14]  F. Doghieri,et al.  Barrier properties of organic–inorganic hybrid coatings based on polyvinyl alcohol with improved water resistance , 2010 .

[15]  L. Piergiovanni,et al.  Effects of different sealing conditions on the seal strength of polypropylene films coated with a bio‐based thin layer , 2009 .

[16]  M. Ghaffari-Moghaddam,et al.  Synthesis, characterization and antibacterial properties of a novel nanocomposite based on polyaniline/polyvinyl alcohol/Ag , 2014 .

[17]  P. Butler,et al.  Smart packaging technologies for fast moving consumer goods. , 2008 .

[18]  A. Dufresne,et al.  Cross-Linked Nanocomposite Polymer Electrolytes Reinforced with Cellulose Whiskers , 2004 .

[19]  Michael Siegrist,et al.  Perceived risks and perceived benefits of different nanotechnology foods and nanotechnology food packaging , 2008, Appetite.

[20]  Lina Zhang,et al.  Interaction and properties of highly exfoliated soy protein/montmorillonite nanocomposites. , 2006, Biomacromolecules.

[21]  O. Kylián,et al.  Modification of cellulose/chitin mix fibers under different cold plasma conditions , 2013, Cellulose.

[22]  C. Biliaderis,et al.  Physical properties of starch nanocrystal-reinforced pullulan films , 2007 .

[23]  Zeynep Aytac,et al.  Polylactic acid (PLA)/Silver-NP/VitaminE bionanocomposite electrospun nanofibers with antibacterial and antioxidant activity , 2014, Journal of Nanoparticle Research.

[24]  M. Brebu,et al.  Comparative Analysis of the Composition and Active Property Evaluation of Certain Essential Oils to Assess their Potential Applications in Active Food Packaging , 2017, Materials.

[25]  A. Daugaard,et al.  Hybrid poly(lactic acid)/nanocellulose/nanoclay composites with synergistically enhanced barrier properties and improved thermomechanical resistance , 2016 .

[26]  Lihui Weng,et al.  Morphology and properties of soy protein isolate thermoplastics reinforced with chitin whiskers. , 2004, Biomacromolecules.

[27]  M. Bhattacharya Polymer Nanocomposites—A Comparison between Carbon Nanotubes, Graphene, and Clay as Nanofillers , 2016, Materials.

[28]  F. Monahan,et al.  Storage Stability of an Antioxidant Active Packaging Coated with Citrus Extract Following a Plasma Jet Pretreatment , 2014, Food and Bioprocess Technology.

[29]  J. Goddard,et al.  Tailored functionalization of low‐density polyethylene surfaces , 2008 .

[30]  G. S. Tatsiana,et al.  Antioxidant Properties of Layer-by-Layer films on the Basis of Tannic Acid , 2006 .

[31]  J. Goddard,et al.  Covalent attachment of lactase to low-density polyethylene films. , 2007, Journal of food science.

[32]  J. Cavaillé,et al.  New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics. , 2005, Biomacromolecules.

[33]  Kazunori Yamada,et al.  Retention of activity of urease immobilized on grafted polymer films , 2006 .

[34]  Mikael S. Hedenqvist,et al.  Reduced water vapour sorption in cellulose nanocomposites with starch matrix , 2009 .

[35]  J. Goddard,et al.  Controlling lipid oxidation via a biomimetic iron chelating active packaging material. , 2013, Journal of agricultural and food chemistry.

[36]  S. D. Worley,et al.  N-halamine biocidal coatings via a layer-by-layer assembly technique. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[37]  Bernadette Sütterlin,et al.  Importance of perceived naturalness for acceptance of food additives and cultured meat , 2017, Appetite.

[38]  J. Grunlan,et al.  Layer-by-layer assembly of thin film oxygen barrier , 2008 .

[39]  M. Frigione,et al.  Characterization of Nanocomposites by Thermal Analysis , 2012, Materials.

[40]  Adina Coroabă,et al.  Polyethylene materials with multifunctional surface properties by electrospraying chitosan/vitamin E formulation destined to biomedical and food packaging applications , 2016, Iranian Polymer Journal.

[41]  J. Goddard,et al.  Iron chelating active packaging: Influence of competing ions and pH value on effectiveness of soluble and immobilized hydroxamate chelators. , 2016, Food chemistry.

[42]  V. Vittoria,et al.  Potential perspectives of bio-nanocomposites for food packaging applications , 2007 .

[43]  Yoonjee Chang,et al.  Development of polylactic acid nanocomposite films reinforced with cellulose nanocrystals derived from coffee silverskin. , 2017, Carbohydrate polymers.

[44]  Sabu Thomas,et al.  Methods for Extraction of Nanocellulose from Various Sources , 2017 .

[45]  L. Brinson,et al.  Polymer nanocomposites: A small part of the story , 2007 .

[46]  M. Strumia,et al.  Immobilization of caffeic acid on a polypropylene film: synthesis and antioxidant properties. , 2010, Journal of agricultural and food chemistry.

[47]  Shyam S. Sablani,et al.  Engineering Properties of Polymeric-Based Antimicrobial Films for Food Packaging: A Review , 2011 .

[48]  L. Jönsson,et al.  Oxygen-scavenging coatings and films based on lignosulfonates and laccase. , 2012, Journal of biotechnology.

[49]  Jochen Weiss,et al.  Functional Materials in Food Nanotechnology , 2006 .

[50]  Andrea Lazzeri,et al.  Poly(lactic acid) (PLA) Based Tear Resistant and Biodegradable Flexible Films by Blown Film Extrusion , 2018, Materials.

[51]  J. Araki,et al.  Steric Stabilization of a Cellulose Microcrystal Suspension by Poly(ethylene glycol) Grafting , 2001 .

[52]  V. Bugatti,et al.  Nanocomposites Based on PCL and Halloysite Nanotubes Filled with Lysozyme: Effect of Draw Ratio on the Physical Properties and Release Analysis , 2017, Nanomaterials.

[53]  Alain Dufresne,et al.  Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. Effect of chemical modification of chitin whiskers. , 2003, Biomacromolecules.

[54]  Carmen Sanchez Reig,et al.  Nanomaterials: a Map for Their Selection in Food Packaging Applications , 2014 .

[55]  A. Zherdev,et al.  [Characterization of silver nanoparticles migration from package materials destined for contact with foods]. , 2012, Voprosy pitaniia.

[56]  C. Macosko,et al.  Graphene/Polymer Nanocomposites , 2010 .

[57]  Gunasekaran,et al.  Preparation and characterization of whey protein film incorporated with TiO2 nanoparticles. , 2009, Journal of food science.

[58]  Sergio Torres-Giner,et al.  Novel route to stabilization of bioactive antioxidants by encapsulation in electrospun fibers of zein prolamine , 2009 .

[59]  Jin Huang,et al.  Facile exfoliation of rectorite nanoplatelets in soy protein matrix and reinforced bionanocomposites thereof , 2007 .

[60]  S. Y. Wang,et al.  Preparation and characterization of whey protein film incorporated with TiO2 nanoparticles. , 2009, Journal of food science.

[61]  C. Champagne,et al.  Antimicrobial action of hydrolyzed chitosan against spoilage yeasts and lactic acid bacteria of fermented vegetables. , 2002, Journal of food protection.

[62]  D. Kaplan,et al.  Biopolymer nanofibrils: structure, modeling, preparation, and applications. , 2018, Progress in polymer science.

[63]  M. Kozłowski,et al.  Recycling of Nanocomposites , 2013 .

[64]  T. Marsh,et al.  Impact of Nanoclays on the Biodegradation of Poly(Lactic Acid) Nanocomposites , 2018, Polymers.

[65]  Yen-Con Hung,et al.  Development of Titanium Dioxide (TiO2 ) Nanocoatings on Food Contact Surfaces and Method to Evaluate Their Durability and Photocatalytic Bactericidal Property. , 2015, Journal of food science.

[66]  Hua-Jie Wang,et al.  Microspheres of corn protein, zein, for an ivermectin drug delivery system. , 2005, Biomaterials.

[67]  Xiaochen Wu,et al.  Liquid exfoliated chitin nanofibrils for re-dispersibility and hybridization of two-dimensional nanomaterials , 2018, Chemical Engineering Journal.

[68]  P. Kelly,et al.  Aluminum oxide barrier coatings on polymer films for food packaging applications , 2014 .

[69]  G. Cavallaro,et al.  Effect of Morphology and Size of Halloysite Nanotubes on Functional Pectin Bionanocomposites for Food Packaging Applications. , 2017, ACS applied materials & interfaces.

[70]  Peter Given,et al.  Micro/nanoencapsulation of active food ingredients , 2009 .

[71]  A. Clearfield,et al.  Intercalation and Exfoliation: A Review on Morphology of Polymer Nanocomposites Reinforced by Inorganic Layer Structures , 2006 .

[72]  J. Nedeljković,et al.  Fabrication and Characterization of Silver−Polyvinyl Alcohol Nanocomposites , 2003 .

[73]  V. Thakur,et al.  Recent progress in biodegradable polymers and nanocomposite-based packaging materials for sustainable environment , 2018 .

[74]  I. Mondragon,et al.  Antimicrobial pullulan derivative prepared by grafting with 3-aminopropyltrimethoxysilane: Characterization and ability to form transparent films , 2014 .

[75]  H. Kastenholz,et al.  Public acceptance of nanotechnology foods and food packaging: The influence of affect and trust , 2007, Appetite.

[76]  Joseph P. Kerry,et al.  Advances and challenges for the use of engineered nanoparticles in food contact materials , 2015 .

[77]  Zi-rong Xu,et al.  Preparation and antibacterial activity of chitosan nanoparticles. , 2004, Carbohydrate research.

[78]  Amparo López-Rubio,et al.  Natural micro and nanobiocomposites with enhanced barrier properties and novel functionalities for food biopackaging applications , 2010 .

[79]  E. Ryser,et al.  Antimicrobial edible films and coatings. , 2004, Journal of food protection.

[80]  Long Yu,et al.  Preparation and characterization of melt-extruded thermoplastic starch/clay nanocomposites , 2007 .

[81]  Bin Sun,et al.  Reinforcement of biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with cellulose nanocrystal/silver nanohybrids as bifunctional nanofillers. , 2014, Journal of materials chemistry. B.

[82]  R. Manavalan,et al.  Nanoparticle: An overview of preparation and characterization , 2011 .

[83]  C. Nerín,et al.  Influence of pH and temperature variations on vapor phase action of an antifungal food packaging against five mold strains , 2015 .

[84]  Helmut Münstedt,et al.  Silver ion release from antimicrobial polyamide/silver composites. , 2005, Biomaterials.

[85]  Kun Zhang,et al.  Scale-Up Fabrication of Biodegradable Poly(butylene adipate-co-terephthalate)/Organophilic–Clay Nanocomposite Films for Potential Packaging Applications , 2018, ACS omega.

[86]  Luis J. Bastarrachea,et al.  Active Packaging Coatings , 2015 .

[87]  V. Barbash,et al.  Preparation and Properties of Nanocellulose from Organosolv Straw Pulp , 2017, Nanoscale Research Letters.

[88]  D. Puglia,et al.  Nanocomposites Based on Biodegradable Polymers , 2018, Materials.

[89]  Ji-won Park,et al.  Bio-nanocomposite Properties and its Food Packaging Applications , 2016 .

[90]  Luming Wang,et al.  Polymer-Nanoparticle Composites Composed of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Coated Silver Nanoparticles , 2015 .

[91]  Luis J. Bastarrachea,et al.  Antimicrobial N-halamine modified polyethylene: characterization, biocidal efficacy, regeneration, and stability. , 2014, Journal of food science.

[92]  Zohreh Honarvar,et al.  Nanocomposites in food packaging applications and their risk assessment for health , 2016, Electronic physician.

[93]  P. Chang,et al.  Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: Effect of hydrolysis time , 2009 .

[94]  R. N. Tharanathan,et al.  Biodegradable films and composite coatings: past, present and future , 2003 .

[95]  Paul Takhistov,et al.  Nanotechnology: A New Frontier in Food Science , 2003 .

[96]  Thitisilp Kijchavengkul,et al.  Compostability of polymers , 2008 .

[97]  L. Piergiovanni,et al.  Antimicrobial activity of lysozyme and lactoferrin incorporated in cellulose-based food packaging , 2012 .

[98]  C. Vasile,et al.  Electrospun Nanostructures as Biodegradable Composite Materials for Biomedical Applications , 2015 .

[99]  M. Pawlicka,et al.  The Impact of Plasma‐modified Films with Sulfur Dioxide, Sodium Oxide on Food Pathogenic Microorganisms , 2015 .

[100]  M. Farhoodi Nanocomposite Materials for Food Packaging Applications: Characterization and Safety Evaluation , 2016, Food Engineering Reviews.

[101]  C. Schick,et al.  Lactoferrin-Immobilized Surfaces onto Functionalized PLA Assisted by the Gamma-Rays and Nitrogen Plasma to Create Materials with Multifunctional Properties. , 2016, ACS applied materials & interfaces.

[102]  Luis J. Bastarrachea,et al.  Inactivation of Listeria monocytogenes on a polyethylene surface modified by layer-by-layer deposition of the antimicrobial N-halamine , 2013 .

[103]  T. V. Duncan,et al.  Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors , 2011, Journal of Colloid and Interface Science.

[104]  L. Matuana,et al.  Water vapor and oxygen barrier properties of extrusion-blown poly(lactic acid)/cellulose nanocrystals nanocomposite films , 2018, Composites Part A: Applied Science and Manufacturing.

[105]  Milford A. Hanna,et al.  Chitosan/clay nanocomposite film preparation and characterization , 2006 .

[106]  F. Devlieghere,et al.  Poly(butylene adipate) functionalized with quaternary phosphonium groups as potential antimicrobial packaging material , 2012 .

[107]  J. Gómez-Estaca,et al.  Advances in antioxidant active food packaging , 2014 .

[108]  J. Goddard,et al.  Effect of polyethylene glycol tether size and chemistry on the attachment of lactase to polyethylene films , 2013 .

[109]  P. Mishra,et al.  Characterization of casein and casein-silver conjugated nanoparticle containing multifunctional (pectin–sodium alginate/casein) bilayer film , 2016, Journal of Food Science and Technology.

[110]  C. Vasile,et al.  Halloysite Containing Composites for Food Packaging Applications , 2018 .

[111]  E. Fortunati,et al.  Antioxidant and antibacterial lignin nanoparticles in polyvinyl alcohol/chitosan films for active packaging , 2016 .

[112]  Chao Gao,et al.  In situ polymerization approach to multiwalled carbon nanotubes-reinforced nylon 1010 composites: Mechanical properties and crystallization behavior , 2006 .

[113]  J. Goddard,et al.  Covalent immobilization of lysozyme on ethylene vinyl alcohol films for nonmigrating antimicrobial packaging applications. , 2013, Journal of agricultural and food chemistry.

[114]  J. Lagarón,et al.  Thermoplastic nanobiocomposites for rigid and flexible food packaging applications , 2008 .

[115]  Helmut Münstedt,et al.  Long-term antimicrobial polyamide 6/silver-nanocomposites , 2007 .

[116]  Hanguo Xiong,et al.  Effect of nano-SiO2 on the performance of starch/polyvinyl alcohol blend films , 2008 .

[117]  J. Teixeira,et al.  Physical and thermal properties of a chitosan/alginate nanolayered PET film , 2010 .

[118]  C. Gante,et al.  Two Different Processes to Obtain Antimicrobial Packaging Containing Natural Oils , 2012 .

[119]  F. Kong,et al.  Biomolecule immobilization techniques for bioactive paper fabrication , 2012, Analytical and Bioanalytical Chemistry.

[120]  Soojin Park,et al.  Influence of plasma treatment on microstructures and acid-base surface energetics of nanostructured carbon blacks: N2 plasma environment , 2001 .

[121]  D. Santos,et al.  Control of catalytic activity of glucose oxidase in layer-by-layer films of chitosan and glucose oxidase , 2007 .

[122]  Xue Li,et al.  Stimuli-responsive polymers and their applications , 2017 .

[123]  Ruijin Yang,et al.  Antimicrobial Polylactic Acid Packaging Films against Listeria and Salmonella in Culture Medium and on Ready-to-Eat Meat , 2014, Food and Bioprocess Technology.

[124]  Walter Steurbaut,et al.  Chitosan as antimicrobial agent: applications and mode of action. , 2003, Biomacromolecules.

[125]  A. Dufresne Processing of Polymer Nanocomposites Reinforced with Polysaccharide Nanocrystals , 2010, Molecules.

[126]  Vibeke Orlien,et al.  Antioxidant active packaging for chicken meat processed by high pressure treatment , 2011 .

[127]  Alain Dufresne,et al.  Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: Processing and mechanical behavior , 1996 .

[128]  G. A. Pedersen,et al.  Six open questions about the migration of engineered nano-objects from polymer-based food-contact materials: a review , 2017, Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment.

[129]  A. Dufresne,et al.  Surface chemical modification of waxy maize starch nanocrystals. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[130]  Thorbjörn Andersson,et al.  Toward an enzyme-based oxygen scavenging laminate. Influence of industrial lamination conditions on the performance of glucose oxidase. , 2002, Biotechnology and bioengineering.

[131]  E. Kny Polymer Nanocomposite Materials Used for Food Packaging , 2013 .

[132]  Kentaro Abe,et al.  Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. , 2007, Biomacromolecules.

[133]  Helmut Münstedt,et al.  The antimicrobial efficacy of polyamide 6/silver-nano- and microcomposites , 2008 .

[134]  C. R. Sinclair,et al.  Chemical migration and food contact materials. , 2007 .

[135]  L. Jönsson,et al.  Co-immobilization of oxalate oxidase and catalase in films for scavenging of oxygen or oxalic acid , 2013 .

[136]  Markus Antonietti,et al.  Sol−Gel Nanocoating: An Approach to the Preparation of Structured Materials , 2001 .

[137]  Valentina Siracusa,et al.  Biodegradable polymers for food packaging: a review , 2008 .

[138]  S. Gunasekaran,et al.  LOW TEMPERATURE FABRICATION OF ZNO-WHEY PROTEIN ISOLATE NANOCOMPOSITE , 2008 .

[139]  I. Petrinic,et al.  Stability of a chitosan layer deposited onto a polyethylene surface , 2013 .

[140]  Peter J. Halley,et al.  Emerging biodegradable materials: starch- and protein-based bio-nanocomposites , 2008 .

[141]  Zhihong Xin,et al.  Effect of nano-packing on preservation quality of Chinese jujube (Ziziphus jujuba Mill. var. inermis (Bunge) Rehd) , 2009 .

[142]  Ruplal Choudhary,et al.  Advances in Antimicrobial Food Packaging with Nanotechnology and Natural Antimicrobials , 2015 .

[143]  M. J. Galotto,et al.  Improvement of Polylactide Properties through Cellulose Nanocrystals Embedded in Poly(Vinyl Alcohol) Electrospun Nanofibers , 2017, Nanomaterials.

[144]  Aaron Brody,et al.  Active Packaging for Food Applications , 2001 .

[145]  D. Kaplan,et al.  Nanofibrils in nature and materials engineering. , 2018, Nature reviews. Materials.

[146]  A. Samarasekara,et al.  Novel antimicrobial nano coated polypropylene based materials for food packaging systems , 2017, 2017 Moratuwa Engineering Research Conference (MERCon).

[147]  Elodie Bugnicourt,et al.  Review on the Processing and Properties of Polymer Nanocomposites and Nanocoatings and Their Applications in the Packaging, Automotive and Solar Energy Fields , 2017, Nanomaterials.

[148]  K. Oksman,et al.  Orientation of cellulose nanowhiskers in polyvinyl alcohol , 2007 .

[149]  L. Tovar,et al.  Behaviour of a new antioxidant active film versus oxidizable model compounds , 2008 .

[150]  Hanguo Xiong,et al.  The structure and properties of a starch-based biodegradable film , 2008 .

[151]  C. Chan,et al.  Polymer surface modification by plasmas and photons , 1996 .

[152]  J. Barish,et al.  Topographical and chemical characterization of polymer surfaces modified by physical and chemical processes , 2011 .

[153]  L. Săcărescu,et al.  Hybrid Nanostructures Containing Sulfadiazine Modified Chitosan as Antimicrobial Drug Carriers , 2016, Nanomaterials.

[154]  S. Cimmino,et al.  Chapter 20 APPLICATION OF RADIATION TECHNOLOGY TO FOOD PACKAGING , 2017 .

[155]  J. Guzman Hybrid nanocellulose/nanoclay composites for food packaging applications , 2016 .

[156]  P. Fernandes,et al.  Immobilization of Naringinase in PVA–Alginate Matrix Using an Innovative Technique , 2010, Applied biochemistry and biotechnology.

[157]  Ahmad Allahbakhsh,et al.  High barrier graphene/polymer nanocomposite films , 2017 .

[158]  Yong Tae Park,et al.  Super Gas Barrier of All-Polymer Multilayer Thin Films , 2011 .

[159]  Andrew J. Whelton,et al.  Measurement Methods to Evaluate Engineered Nanomaterial Release from Food Contact Materials. , 2014, Comprehensive reviews in food science and food safety.

[160]  M. Siegrist,et al.  Are risk or benefit perceptions more important for public acceptance of innovative food technologies: A meta-analysis , 2016 .

[161]  J. Goddard,et al.  Influence of nanoparticle diameter on conjugated enzyme activity , 2013 .

[162]  Masaru Matsuo,et al.  Morphology and mechanical and electrical properties of oriented PVA–VGCF and PVA–MWNT composites , 2006 .

[163]  Xiaodong Cao,et al.  Comparative study on the films of poly(vinyl alcohol)/pea starch nanocrystals and poly(vinyl alcohol)/native pea starch , 2008 .

[164]  A. Brody Nano and food packaging technologies converge , 2006 .

[165]  Muhammad M. Rahman,et al.  High-performance green nanocomposites using aligned bacterial cellulose and soy protein , 2017 .

[166]  C. Vasile,et al.  Responsive Polymeric Nanotherapeutics , 2019, Polymeric Nanomaterials in Nanotherapeutics.

[167]  P. Luo,et al.  Nanotechnology in the detection and control of microorganisms. , 2008, Advances in applied microbiology.

[168]  Frantisek Svec,et al.  Highly efficient enzyme reactors containing trypsin and endoproteinase LysC immobilized on porous polymer monolith coupled to MS suitable for analysis of antibodies. , 2009, Analytical chemistry.

[169]  J. Goddard,et al.  Polymer surface modification for the attachment of bioactive compounds , 2007 .

[170]  L. Bufalino,et al.  The effect of surface modifications with corona discharge in pinus and eucalyptus nanofibril films , 2018, Cellulose.

[171]  R. Gavara,et al.  Modified sodium caseinate films as releasing carriers of lysozyme , 2010 .

[172]  Panagiotis Dallas,et al.  Silver polymeric nanocomposites as advanced antimicrobial agents: classification, synthetic paths, applications, and perspectives. , 2011, Advances in colloid and interface science.

[173]  Xiaofei Ma,et al.  Preparation and characterization of glycerol plasticized-pea starch/ZnO-carboxymethylcellulose sodium nanocomposites. , 2009, Bioresource technology.

[174]  B. Jansen,et al.  Prevention of biofilm formation by polymer modification , 1995, Journal of Industrial Microbiology.

[175]  Ioannis Tsivintzelis,et al.  Biodegradable polymer nanocomposites: the role of nanoclays on the thermomechanical characteristics and the electrospun fibrous structure. , 2008, Acta biomaterialia.

[176]  J. Chen,et al.  Bacterial repellence from polyethylene terephthalate surface modified by acetylene plasma immersion ion implantation–deposition , 2004 .

[177]  A. V. Machado,et al.  Preparation of polymer-based nanocomposites by different routes , 2013 .

[178]  H. Gaub,et al.  Intermolecular forces and energies between ligands and receptors. , 1994, Science.

[179]  J. Goddard,et al.  Iron chelating polypropylene films: Manipulating photoinitiated graft polymerization to tailor chelating activity , 2014 .

[180]  Rungsinee Sothornvit,et al.  Plasticizers in edible films and coatings , 2005 .

[181]  C. Vasile,et al.  Novel procedure to enhance PLA surface properties by chitosan irreversible immobilization , 2016 .

[182]  M. Traber,et al.  Vitamin E: antioxidant activity, biokinetics, and bioavailability. , 1990, Annual review of nutrition.

[183]  C. Vasile,et al.  Alginate/Lignosulfonate Blends with Photoprotective and Antioxidant Properties for Active Packaging Applications , 2018, Journal of Polymers and the Environment.

[184]  Constantine D. Papaspyrides,et al.  A review on polymer–layered silicate nanocomposites , 2008 .

[185]  S. Unal,et al.  Halloysite Nanotubes/Polyethylene Nanocomposites for Active Food Packaging Materials with Ethylene Scavenging and Gas Barrier Properties , 2017, Food and Bioprocess Technology.

[186]  M. Jokar,et al.  Study of silver ion migration from melt-blended and layered-deposited silver polyethylene nanocomposite into food simulants and apple juice , 2014, Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment.

[187]  H. Park,et al.  A coating for use as an antimicrobial and antioxidative packaging material incorporating nisin and α-tocopherol , 2004 .

[188]  L. Brinson,et al.  Functionalized graphene sheets for polymer nanocomposites. , 2008, Nature nanotechnology.

[189]  M. C. Stuart,et al.  Emerging applications of stimuli-responsive polymer materials. , 2010, Nature materials.

[190]  A. Rochliadi,et al.  Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse , 2016 .

[191]  E. Bouwer,et al.  Biodegradation of Carbon Nanotube/Polymer Nanocomposites using a Monoculture. , 2018, Environmental science & technology.

[192]  Anamaria,et al.  CHITOSAN COATINGS APPLIED TO POLYETHYLENE SURFACE TO OBTAIN FOOD-PACKAGING MATERIALS , 2014 .

[193]  L. Barbu-Tudoran,et al.  New PLA/ZnO:Cu/Ag bionanocomposites for food packaging , 2017 .

[194]  Bartolomeu G. de S. Medeiros,et al.  Polysaccharide/Protein Nanomultilayer Coatings: Construction, Characterization and Evaluation of Their Effect on ‘Rocha’ Pear (Pyrus communis L.) Shelf-Life , 2012, Food and Bioprocess Technology.

[195]  Ruplal Choudhary,et al.  Nanoencapsulation and immobilization of cinnamaldehyde for developing antimicrobial food packaging material , 2014 .

[196]  J. L. Castro-Mayorga,et al.  On the Use of the Electrospinning Coating Technique to Produce Antimicrobial Polyhydroxyalkanoate Materials Containing In Situ-Stabilized Silver Nanoparticles , 2016, Nanomaterials.

[197]  Yoshikuni Teramoto,et al.  Recent Advances in Nanocellulose Composites with Polymers: A Guide for Choosing Partners and How to Incorporate Them , 2018, Polymers.

[198]  James Smith Food packaging — Principles and practice , 1993 .

[199]  P. Supaphol,et al.  Preparation and characterization of α-chitin whisker-reinforced chitosan nanocomposite films with or without heat treatment , 2005 .

[200]  K. Oksman,et al.  Synergistic effect of chitin nanocrystals and orientations induced by solid-state drawing on PLA-based nanocomposite tapes , 2018, Composites Science and Technology.

[201]  Michael V. Liga,et al.  Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. , 2008, Water research.

[202]  Yusheng Zhao,et al.  Immobilization of glucose oxidase in electrospun nanofibrous membranes for food preservation , 2012 .

[203]  N. Soares,et al.  Bitterness reduction in grapefruit juice through active packaging , 1998 .

[204]  Petr Saha,et al.  Surface-modified antibacterial TiO2/Ag+ nanoparticles : Preparation and properties , 2006 .

[205]  P. Chang,et al.  Simultaneous reinforcing and toughening: new nanocomposites of waterborne polyurethane filled with low loading level of starch nanocrystals , 2008 .

[206]  A. Montenero,et al.  Natamycin based sol-gel antimicrobial coatings on polylactic acid films for food packaging. , 2014, Food chemistry.

[207]  Jose Maria Kenny,et al.  Thermal and mechanical properties of single-walled carbon nanotubes–polypropylene composites prepared by melt processing , 2005 .

[208]  Hood Chatham,et al.  Oxygen diffusion barrier properties of transparent oxide coatings on polymeric substrates , 1996 .

[209]  Menachem Elimelech,et al.  Single-walled carbon nanotubes exhibit strong antimicrobial activity. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[210]  A. Hoffman,et al.  Physicochemical Surface Modification of Materials Used in Medicine , 2013 .

[211]  Luiz H. C. Mattoso,et al.  Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles , 2009 .

[212]  Kwang S. Kim,et al.  Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices , 2012 .

[213]  J. Goddard,et al.  Layer by layer assembly of a biocatalytic packaging film: lactase covalently bound to low-density polyethylene. , 2013, Journal of food science.

[214]  Bartolomeu G. de S. Medeiros,et al.  Interactions between κ-carrageenan and chitosan in nanolayered coatings—Structural and transport properties , 2012 .

[215]  P. Braun,et al.  Coaxial Electrospinning of Self‐Healing Coatings , 2010, Advanced materials.

[216]  E. Fortunati,et al.  Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. , 2012, Carbohydrate polymers.

[217]  F. Medellín-Rodríguez,et al.  Mechanical and Antimicrobial Properties of Multilayer Films with a Polyethylene/Silver Nanocomposite Layer , 2008 .

[218]  Muhammad M. Rahman,et al.  Oriented bacterial cellulose-soy protein based fully ‘green’ nanocomposites , 2016 .

[219]  D. Mcclements,et al.  Influence of non-migratory metal-chelating active packaging film on food quality: impact on physical and chemical stability of emulsions. , 2014, Food chemistry.

[220]  Kofi J. Brobbey,et al.  Efficacy Of Natural Plant Extracts In Antimicrobial Packaging Systems , 2017 .

[221]  Ashutosh Chilkoti,et al.  Creating “Smart” Surfaces Using Stimuli Responsive Polymers , 2002 .

[222]  Milena Sinigaglia,et al.  Effect of Ag‐containing Nano‐composite Active Packaging System on Survival of Alicyclobacillus acidoterrestris , 2004 .

[223]  Julie A. Auxier,et al.  Activity retention after nisin entrapment in a polyethylene oxide brush layer. , 2014, Journal of Food Protection.

[224]  J. Lagarón,et al.  Characterization of transparent silver loaded poly(l-lactide) films produced by melt-compounding for the sustained release of antimicrobial silver ions in food applications , 2014 .

[225]  L. Quinzani,et al.  Rheological and barrier properties of nanocomposites of HDPE and exfoliated montmorillonite , 2014 .

[226]  J. Lagarón,et al.  Novel silver-based nanoclay as an antimicrobial in polylactic acid food packaging coatings , 2010, Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment.

[227]  Kentaro Abe,et al.  Property enhancement of optically transparent bionanofiber composites by acetylation , 2006 .

[228]  J. Bozell,et al.  Introduction of primary antioxidant activity to chitosan for application as a multifunctional food packaging material , 2013 .

[229]  J. Goddard,et al.  Biomimetic design of chelating interfaces , 2015 .

[230]  C. Vasile,et al.  Effect of Nanoclay Hydrophilicity on the Poly(lactic acid)/Clay Nanocomposites Properties , 2014 .

[231]  Mansor B. Ahmad,et al.  Comparison of In Situ Polymerization and Solution-Dispersion Techniques in the Preparation of Polyimide/Montmorillonite (MMT) Nanocomposites , 2011, International journal of molecular sciences.

[232]  Y. Lvov,et al.  Functional polymer–clay nanotube composites with sustained release of chemical agents , 2013 .

[233]  Andrea Carolina Valderrama Solano,et al.  Two Different Processes to Obtain Antimicrobial Packaging Containing Natural Oils , 2011, Food and Bioprocess Technology.

[234]  M. Mirjalili,et al.  Review for application of electrospinning and electrospun nanofibers technology in textile industry , 2016, Journal of Nanostructure in Chemistry.

[235]  S. Swain,et al.  Bionanocomposites for Food Packaging Applications , 2017 .

[236]  A. Cuza,et al.  EFFECTIVENESS OF CHITOSAN AS ANTIMICROBIAL AGENT IN LDPE/CS COMPOSITE FILMS AS MINCED POULTRY MEAT PACKAGING MATERIALS , 2014 .

[237]  Kristiina Oksman,et al.  Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. , 2005, Biomacromolecules.

[238]  L. Angiolini,et al.  Polymers as free radical photoinitiators , 1995 .

[239]  T. Jin,et al.  Biodegradable polylactic acid polymer with nisin for use in antimicrobial food packaging. , 2008, Journal of food science.

[240]  Jóice Maria Scheibel,et al.  Starch-halloysite nanocomposites containing nisin: Characterization and inhibition of Listeria monocytogenes in soft cheese , 2016 .

[241]  J. Cavaillé,et al.  Nanocomposites of isotactic polypropylene reinforced with rod-like cellulose whiskers , 2006 .

[242]  Y. Davoudpour,et al.  Production and modification of nanofibrillated cellulose using various mechanical processes: a review. , 2014, Carbohydrate polymers.

[243]  C. Realini,et al.  Active and intelligent packaging systems for a modern society. , 2014, Meat science.

[244]  Klaus Friedrich,et al.  Tensile performance improvement of low nanoparticles filled-polypropylene composites , 2002 .

[245]  Kristiina Oksman,et al.  Biopolymer based nanocomposites: Comparing layered silicates and microcrystalline cellulose as nanoreinforcement , 2006 .

[246]  Rui Xiong,et al.  Naturally-derived biopolymer nanocomposites: Interfacial design, properties and emerging applications , 2018 .

[247]  H. M. Azeredo Nanocomposites for food packaging applications , 2009 .

[248]  A. Arora,et al.  Review: nanocomposites in food packaging. , 2010, Journal of food science.

[249]  F. Monahan,et al.  Effect of an active packaging with citrus extract on lipid oxidation and sensory quality of cooked turkey meat. , 2014, Meat science.

[250]  J. Lagarón,et al.  Multifunctional and nanoreinforced polymers for food packaging , 2011 .

[251]  Kirtiraj K. Gaikwad,et al.  High adsorption of ethylene by alkali-treated halloysite nanotubes for food-packaging applications , 2018, Environmental Chemistry Letters.

[252]  W. Punyodom,et al.  Effect of silver-loaded kaolinite on real ageing, hydrolytic degradation, and biodegradation of composite blown films based on poly(lactic acid) and poly(butylene adipate-co-terephthalate) , 2016 .

[253]  J. Goddard,et al.  Performance of Nonmigratory Iron Chelating Active Packaging Materials in Viscous Model Food Systems. , 2015, Journal of food science.

[254]  F. Doroftei,et al.  Comparative study on gamma irradiation and cold plasma pretreatment for a cellulosic substrate modification with phenolic compounds , 2017 .

[255]  Julie M Goddard,et al.  Antimicrobial food equipment coatings: applications and challenges. , 2015, Annual review of food science and technology.

[256]  George Z. Papageorgiou,et al.  Dynamic mechanical and morphological studies of isotactic polypropylene/fumed silica nanocomposites with enhanced gas barrier properties , 2006 .