Cadherin-mediated regulation of microtubule dynamics

[1]  A. Kamal,et al.  Connecting vesicle transport to the cytoskeleton. , 2000, Current opinion in cell biology.

[2]  D. Agard,et al.  Structure of the γ-tubulin ring complex: a template for microtubule nucleation , 2000, Nature Cell Biology.

[3]  T. J. Keating,et al.  Immunostructural evidence for the template mechanism of microtubule nucleation , 2000, Nature Cell Biology.

[4]  Yixian Zheng,et al.  A new function for the γ -tubulin ring complex as a microtubule minus-end cap , 2000, Nature Cell Biology.

[5]  A. Reynolds,et al.  The p120 catenin family: complex roles in adhesion, signaling and cancer. , 2000, Journal of cell science.

[6]  J. Kahana,et al.  Beyond Nuclear Transport: Ran-Gtp as a Determinant of Spindle Assembly , 1999 .

[7]  P. Carmeliet,et al.  Targeted Deficiency or Cytosolic Truncation of the VE-cadherin Gene in Mice Impairs VEGF-Mediated Endothelial Survival and Angiogenesis , 1999, Cell.

[8]  B. Geiger,et al.  Excess β‐catenin promotes accumulation of transcriptionally active p53 , 1999, The EMBO journal.

[9]  T. J. Keating,et al.  Centrosomal and non‐centrosomal microtubules , 1999, Biology of the cell.

[10]  Timothy J. Mitchison,et al.  Kin I Kinesins Are Microtubule-Destabilizing Enzymes , 1999, Cell.

[11]  G. Borisy,et al.  Centrosomal control of microtubule dynamics. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[12]  A. Markham,et al.  EB1, a protein which interacts with the APC tumour suppressor, is associated with the microtubule cytoskeleton throughout the cell cycle , 1998, Oncogene.

[13]  B. Geiger,et al.  Inhibition of β-catenin-mediated transactivation by cadherin derivatives , 1998 .

[14]  B. Geiger,et al.  Direct involvement of N-cadherin-mediated signaling in muscle differentiation. , 1998, Molecular biology of the cell.

[15]  B. Geiger,et al.  Differential molecular interactions of beta-catenin and plakoglobin in adhesion, signaling and cancer. , 1998, Current opinion in cell biology.

[16]  R. Margolis,et al.  Microtubule treadmilling: what goes around comes around , 1998, BioEssays : news and reviews in molecular, cellular and developmental biology.

[17]  G. Drewes,et al.  MAPs, MARKs and microtubule dynamics. , 1998, Trends in biochemical sciences.

[18]  S. Lawler Microtubule dynamics: If you need a shrink try stathmin/Op18 , 1998, Current Biology.

[19]  B. Geiger,et al.  Long-range and selective autoregulation of cell-cell or cell-matrix adhesions by cadherin or integrin ligands. , 1998, Journal of cell science.

[20]  M. Peifer,et al.  Armadillo and dTCF: a marriage made in the nucleus. , 1997, Current opinion in genetics & development.

[21]  P. Polakis The adenomatous polyposis coli (APC) tumor suppressor. , 1997, Biochimica et biophysica acta.

[22]  T. J. Keating,et al.  Microtubule release from the centrosome. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[23]  B. Geiger,et al.  Involvement of microtubules in the control of adhesion-dependent signal transduction , 1996, Current Biology.

[24]  Yixian Zheng,et al.  Nucleation of microtubule assembly by a γ-tubulin-containing ring complex , 1995, Nature.

[25]  F. Walsh,et al.  Signal transduction events underlying neurite outgrowth stimulated by cell adhesion molecules , 1994, Current Opinion in Neurobiology.

[26]  Vladimir Gelfand,et al.  Microtubule dynamics in fish melanophores , 1994, The Journal of cell biology.

[27]  P. Polakis,et al.  The APC gene product associates with microtubules in vivo and promotes their assembly in vitro. , 1994, Cancer research.

[28]  V. Centonze,et al.  Microtubule nucleation and release from the neuronal centrosome , 1993, The Journal of cell biology.

[29]  P. Baas,et al.  The plus ends of stable microtubules are the exclusive nucleating structures for microtubules in the axon , 1992, The Journal of cell biology.

[30]  M. Takeichi,et al.  Cadherin cell adhesion receptors as a morphogenetic regulator. , 1991, Science.

[31]  R. Pepperkok,et al.  Microtubules are stabilized in confluent epithelial cells but not in fibroblasts , 1990, The Journal of cell biology.

[32]  H. McNeill,et al.  Novel function of the cell adhesion molecule uvomorulin as an inducer of cell surface polarity , 1990, Cell.

[33]  E. Karsenti,et al.  The subcellular organization of Madin-Darby canine kidney cells during the formation of a polarized epithelium , 1989, The Journal of cell biology.

[34]  G. Borisy,et al.  Progressive and spatially differentiated stability of microtubules in developing neuronal cells , 1989, The Journal of cell biology.

[35]  E D Salmon,et al.  Real-time observations of microtubule dynamic instability in living cells , 1988, The Journal of cell biology.

[36]  G. Banker,et al.  Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[37]  M. Kirschner,et al.  New features of microtubule behaviour observed in vivo , 1988, Nature.

[38]  G. Borisy,et al.  Direct observation of microtubule dynamics in living cells , 1988, Nature.

[39]  B. Geiger,et al.  A-CAM: a 135-kD receptor of intercellular adherens junctions. II. Antibody-mediated modulation of junction formation , 1986, The Journal of cell biology.

[40]  B. Geiger,et al.  Changes in membrane-microfilament interaction in intercellular adherens junctions upon removal of extracellular Ca2+ ions , 1986, The Journal of cell biology.

[41]  B. Geiger,et al.  A 135‐kd membrane protein of intercellular adherens junctions. , 1984, The EMBO journal.

[42]  M. Kirschner,et al.  Role of the centrosome in organizing the interphase microtubule array: properties of cytoplasts containing or lacking centrosomes , 1984, The Journal of cell biology.

[43]  D. Bray,et al.  Serial analysis of microtubules in cultured rat sensory axons , 1981, Journal of neurocytology.

[44]  Y. Zheng,et al.  A new function for the gamma-tubulin ring complex as a microtubule minus-end cap. , 2000, Nature cell biology.

[45]  D. Agard,et al.  Structure of the gamma-tubulin ring complex: a template for microtubule nucleation. , 2000, Nature cell biology.

[46]  A. Irintchev,et al.  The M-cadherin catenin complex interacts with microtubules in skeletal muscle cells: implications for the fusion of myoblasts. , 1999, Journal of cell science.

[47]  T. Svitkina,et al.  Correlative light and electron microscopy of the cytoskeleton of cultured cells. , 1998, Methods in enzymology.

[48]  K. Johnson,et al.  A role for cadherins in cellular signaling and differentiation , 1998, Journal of cellular biochemistry. Supplement.

[49]  B. Geiger,et al.  Inhibition of beta-catenin-mediated transactivation by cadherin derivatives. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[50]  B. Gumbiner,et al.  Molecular and functional analysis of cadherin-based adherens junctions. , 1997, Annual review of cell and developmental biology.

[51]  B. Alberts,et al.  Nucleation of microtubule assembly by a gamma-tubulin-containing ring complex. , 1995, Nature.

[52]  B. Alberts,et al.  The centrosome and cellular organization. , 1994, Annual review of biochemistry.

[53]  A. Bershadsky,et al.  Microtubule dynamics: mechanism, regulation, and function. , 1991, Annual review of cell biology.

[54]  P Wadsworth,et al.  Interphase microtubule dynamics are cell type-specific. , 1990, Journal of cell science.