Why rare-earth ferromagnets are so rare: Insights from the p -wave Kondo model

Magnetic exchange in Kondo lattice systems is of the Ruderman-Kittel-Kasuya-Yosida type, whose sign depends on the Fermi wave vector k(F). In the simplest setting, for small k(F), the interaction is predominately ferromagnetic, whereas it turns more antiferromagnetic with growing k(F). It is remarkable that even though k(F) varies vastly among the rare-earth systems, an overwhelming majority of lanthanide magnets are in fact antiferromagnets. To address this puzzle, we investigate the effects of a p-wave form factor for the Kondo coupling pertinent to nearly all rare-earth intermetallics. We show that this leads to interference effects which for small k(F) are destructive, greatly reducing the size of the RKKY interaction in the cases where ferromagnetism would otherwise be strongest. By contrast, for large k(F), constructive interference can enhance antiferromagnetic exchange. Based on this, we propose a route for designing ferromagnetic rare-earth magnets.

[1]  H. Kitazawa,et al.  Anisotropic magnetic properties and magnetic structure of YbPdSi , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[2]  T. R. Kirkpatrick,et al.  Metallic Quantum Ferromagnets , 2015, 1502.02898.

[3]  V. Alexandrov,et al.  Kondo breakdown in topological Kondo insulators. , 2015, Physical review letters.

[4]  V. Alexandrov,et al.  End states in a one-dimensional topological Kondo insulator in large- N limit , 2014 .

[5]  M. Brando,et al.  Competing orders, competing anisotropies, and multicriticality: The case of Co-doped YbRh2Si2 , 2013, 1312.4539.

[6]  V. Alexandrov,et al.  Cubic topological Kondo insulators. , 2013, Physical review letters.

[7]  M. Brando,et al.  Magnetism, f-electron localization and superconductivity in 122-type heavy-fermion metals , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[8]  W. Marsden I and J , 2012 .

[9]  M. Brando,et al.  Evolution of magnetism in Yb(Rh1-xCox)2Si2 , 2011, 1104.1285.

[10]  R. Baumbach,et al.  The non-centrosymmetric heavy fermion ferromagnet Sm2Fe12P7 , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[11]  R. Pöttgen,et al.  Bridgman Crystal Growth and Structure Refinement of YbPdGe and YbPtGe – Two Different Superstructures of the KHg2 Type , 2008 .

[12]  Tanmoy Das,et al.  Superconductivity and topological Fermi surface transitions in electron-doped cuprates near optimal doping , 2007, 0711.1504.

[13]  A. I. Lichtenstein,et al.  Half-metallic ferromagnets: From band structure to many-body effects , 2007, 0711.0872.

[14]  H. Löhneysen,et al.  Superconductivity on the border of weak itinerant ferromagnetism in UCoGe. , 2007, Physical review letters.

[15]  Z. Fisk,et al.  Discovery of beta-LnNiSb3 (Ln = La, Ce): crystal growth, structure, and magnetic and transport behavior. , 2007, Inorganic Chemistry.

[16]  P. Manfrinetti,et al.  Crystal structure and the magnetic properties of CeTiGe3 , 2005 .

[17]  T. Takabatake,et al.  Heavy-fermion weak-ferromagnet YbRhSb , 2004 .

[18]  A. Galatanu,et al.  Crystal structure, magnetic ordering, and magnetic excitation in the 4f-localized ferromagnet CeAgSb2 , 2003 .

[19]  P. Rogl,et al.  The isothermal section at 750 C of the Ce-Pd-In system , 2003 .

[20]  E. Ressouche,et al.  Coexistence of superconductivity and ferromagnetism in URhGe , 2022 .

[21]  P. Fazekas,et al.  Lecture notes on electron correlation and magnetism , 1999 .

[22]  H. Kee,et al.  CO-OPERATIVE KONDO EFFECT IN THE TWO-CHANNEL KONDO LATTICE , 1998, cond-mat/9811006.

[23]  M. Ulmke,et al.  Metallic ferromagnetism: progress in our understanding of an old strong-coupling problem , 1998, cond-mat/9804112.

[24]  V. Dugaev,et al.  RKKY interaction in one- and two-dimensional electron gases , 1998 .

[25]  H. Ikeda,et al.  A Theory of Anisotropic Semiconductor of Heavy Fermions , 1996, cond-mat/9605138.

[26]  M. Reehuis,et al.  The rate earth transition metal phosphide oxides LnFePO, LnRuPO and LnCoPO with ZrCuSiAs type structure , 1995 .

[27]  P. Rogl,et al.  Ternary Compounds REAgSb2, RE = Y, La, Ce, Pr, Ndr Sm, Gd, Tb, Dy, Ho, Er, Tm: Magnetism and Crystal Structure , 1995 .

[28]  O. Bodak,et al.  Investigation of phase relationships and physical properties of YbPdGe compounds , 1995 .

[29]  T. Mizushima,et al.  Magnetic Properties of the Dense Kondo Compound YbNiSn , 1991 .

[30]  Smith,et al.  Competing interactions in the heavy-electron antiferromagnets CeM2Sn2 (M=Ni, Ir, Cu, Rh, Pd, and Pt). , 1991, Physical review. B, Condensed matter.

[31]  Yafet Ruderman-Kittel-Kasuya-Yosida range function of a one-dimensional free-electron gas. , 1987, Physical review. B, Condensed matter.

[32]  J. Kappler,et al.  Intermediate valence, magnetic ordering, and volume effect in the cerium-palladium system , 1985 .

[33]  K. Takegahara,et al.  Slater-Koster tables for f electrons , 1980 .

[34]  S. Doniach The Kondo lattice and weak antiferromagnetism , 1977 .

[35]  E. Parthé,et al.  AB compounds with ScY and rare earth metals. II. FeB and CrB structures of monosilicides and germanides , 1966 .

[36]  John B. Goodenough,et al.  An interpretation of the magnetic properties of the perovskite-type mixed crystals La1-xSrxCoO3-λ , 1958 .

[37]  J. Kanamori Theory of the Magnetic Properties of Ferrous and Cobaltous Oxides, II , 1957 .

[38]  T. Kasuya,et al.  A Theory of Metallic Ferro- and Antiferromagnetism on Zener's Model , 1956 .

[39]  C. Kittel,et al.  INDIRECT EXCHANGE COUPLING OF NUCLEAR MAGNETIC MOMENTS BY CONDUCTION ELECTRONS , 1954 .

[40]  Philip W. Anderson,et al.  Antiferromagnetism. Theory of Superexchange Interaction , 1950 .