Confinement Loss in Kagome and Tube Lattice Fibers: Comparison and Analysis

In this paper, a thorough numerical analysis of the confinement loss in kagome and tube lattice fibers is presented. The results show that the confinement loss strongly depends on the shape of the struts composing the core boundary and the cladding. This explains why confinement loss in kagome fibers is much higher than in tube lattice ones. In fact, the closer to a perfectly circular arc the struts, the lower the confinement loss. For this reason, struts shape must be carefully controlled during the fabrication process.

[1]  S. Leon-Saval,et al.  Reducing the Size of Hollow Terahertz Waveguides , 2011, Journal of Lightwave Technology.

[2]  M Ibanescu,et al.  Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers. , 2001, Optics express.

[3]  Knight,et al.  Photonic band gap guidance in optical fibers , 1998, Science.

[4]  Dirk Müller,et al.  Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers , 2003, Science.

[5]  S. Leon-Saval,et al.  Antiresonant reflection and inhibited coupling in hollow-core square lattice optical fibres. , 2008, Optics express.

[6]  S. Afshar V,et al.  Bandgaps and antiresonances in integrated-ARROWs and Bragg fibers; a simple model. , 2008, Optics express.

[7]  Luca Vincetti,et al.  Waveguiding mechanism in tube lattice fibers. , 2010, Optics express.

[8]  M. Large,et al.  Liquid-filled hollow core microstructured polymer optical fiber. , 2006, Optics express.

[9]  Sébastien Février,et al.  Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification. , 2010, Optics express.

[10]  E. Dianov,et al.  Demonstration of a waveguide regime for a silica hollow--core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm. , 2011, Optics express.

[11]  J. E. Lewis,et al.  Properties of dielectric-tube waveguides , 1969 .

[12]  A. Bjarklev,et al.  Gas sensing using air-guiding photonic bandgap fibers , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[13]  Fetah Benabid,et al.  Square-lattice large-pitch hollow-core photonic crystal fiber , 2008 .

[14]  Georges Humbert,et al.  Ultraviolet guiding hollow-core photonic crystal fiber. , 2009, Optics letters.

[15]  Luca Vincetti,et al.  Confinement Loss of Tube Lattice and Kagome Fibers , 2011 .

[16]  Jin-Long Peng,et al.  Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding. , 2010, Optics express.

[17]  Stefano Selleri,et al.  Modal analysis of rib waveguide through finite element and mode matching methods , 2001 .

[18]  L. Vincetti Single-mode propagation in triangular tube lattice hollow-core terahertz fibers , 2010 .

[19]  Amnon Yariv,et al.  Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports. , 2004, Optics express.

[20]  P. Yeh,et al.  Theory of Bragg fiber , 1978 .

[21]  P. Roberts,et al.  Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber. , 2011, Optics letters.

[22]  Luca Vincetti,et al.  Complex FEM modal solver of optical waveguides with PML boundary conditions , 2001 .

[23]  F Benabid,et al.  Hollow-core photonic bandgap fibre: new light guidance for new science and technology , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[24]  Fetah Benabid,et al.  Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells , 2009 .

[25]  F Benabid,et al.  Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs , 2007, Science.

[26]  Luca Vincetti,et al.  Numerical analysis of plastic hollow core microstructured fiber for Terahertz applications , 2009 .

[27]  Ci-Ling Pan,et al.  Terahertz air-core microstructure fiber , 2008 .