THE WEAK s-PROCESS IN MASSIVE STARS AND ITS DEPENDENCE ON THE NEUTRON CAPTURE CROSS SECTIONS

The slow neutron capture process in massive stars (weak s process) produces most of the s-process isotopes between iron and strontium. Neutrons are provided by the 22Ne(α,n)25Mg reaction, which is activated at the end of the convective He-burning core and in the subsequent convective C-burning shell. The s-process-rich material in the supernova ejecta carries the signature of these two phases. In the past years, new measurements of neutron capture cross sections of isotopes beyond iron significantly changed the predicted weak s-process distribution. The reason is that the variation of the Maxwellian-averaged cross sections (MACS) is propagated to heavier isotopes along the s path. In the light of these results, we present updated nucleosynthesis calculations for a 25 M☉ star of Population I (solar metallicity) in convective He-burning core and convective C-burning shell conditions. In comparison with previous simulations based on the Bao et al. compilation, the new measurement of neutron capture cross sections leads to an increase of s-process yields from nickel up to selenium. The variation of the cross section of one isotope along the s-process path is propagated to heavier isotopes, where the propagation efficiency is higher for low cross sections. New 74Ge, 75As, and 78Se MACS result in a higher production of germanium, arsenic, and selenium, thereby reducing the s-process yields of heavier elements by propagation. Results are reported for the He core and for the C shell. In shell C-burning, the s-process nucleosynthesis is more uncertain than in the He core, due to higher MACS uncertainties at higher temperatures. We also analyze the impact of using the new lower solar abundances for CNO isotopes on the s-process predictions, where CNO is the source of 22Ne, and we show that beyond Zn this is affecting the s-process yields more than nuclear or stellar model uncertainties considered in this paper. In particular, using the new updated initial composition, we obtain a high s-process production (overproduction higher than 16O, ∼100) for Cu, Ga, Ge, and As. Using the older abundances by Anders & Grevesse, also Se, Br, Kr, and Rb are efficiently produced. Our results have important implications in explaining the origin of copper in the solar abundance distribution, pointing to a prevailing contribution from the weak s-process in agreement with spectroscopic observations and Galactic chemical evolution calculations. Because of the improvement due to the new MACS for nickel and copper isotopes, the nucleosynthesis of copper is less affected by nuclear uncertainties compared to heavier s-process elements. An experimental determination of the 63Ni MACS is required for a further improvement of the abundance prediction of copper. The available spectroscopic observations of germanium and gallium in stars are also discussed, where most of the cosmic abundances of these elements derives from the s-process in massive stars.

[1]  J. José,et al.  Nuclear astrophysics: the unfinished quest for the origin of the elements , 2011, 1107.2234.

[2]  F. Käppeler,et al.  Neutron Capture Cross Sections for the Weak s Process , 2009, Publications of the Astronomical Society of Australia.

[3]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[4]  L. The,et al.  Massive Stars: Input Physics and Stellar Models , 2009 .

[5]  K. Kratz,et al.  NUCLEOSYNTHESIS MODES IN THE HIGH-ENTROPY WIND OF TYPE II SUPERNOVAE: COMPARISON OF CALCULATIONS WITH HALO-STAR OBSERVATIONS , 2008, 0901.2541.

[6]  Torino,et al.  The s-Process in Massive Stars at Low Metallicity: The Effect of Primary 14N from Fast Rotating Stars , 2008, 0810.0182.

[7]  A. Heger,et al.  DEPENDENCE OF s-PROCESS NUCLEOSYNTHESIS IN MASSIVE STARS ON TRIPLE-ALPHA AND 12C(α, γ)16O REACTION RATE UNCERTAINTIES , 2008, 0809.0291.

[8]  C. Sneden,et al.  Neutron-Capture Elements in the Early Galaxy , 2008 .

[9]  F. Käppeler,et al.  Stellar (n, {gamma}) cross sections for Br and Rb: Matching the weak and main s-process components , 2008 .

[10]  G. Wasserburg,et al.  Abundances of Sr, Y, and Zr in Metal-Poor Stars and Implications for Chemical Evolution in the Early Galaxy , 2008, 0807.0809.

[11]  K. Sorai,et al.  Stellar Abundances for the Galactic Archeology (SAGA) Database — Compilation of the Characteristics of Known Extremely Metal-Poor Stars , 2008, 0806.3697.

[12]  David K. Lai,et al.  Detailed Abundances for 28 Metal-poor Stars: Stellar Relics in the Milky Way , 2008, 0804.1370.

[13]  Roberto Gallino,et al.  Neutron capture cross sections for the weak s process in massive stars , 2008 .

[14]  L. Wisotzki,et al.  New Extremely Metal-Poor Stars in the Galactic Halo , 2007, 0709.0029.

[15]  F. Käppeler,et al.  The s process in massive stars , 2007 .

[16]  Italy.,et al.  Contrasting copper evolution in ω Centauri and the Milky Way , 2007, astro-ph/0703760.

[17]  S. Woosley,et al.  Nucleosynthesis and remnants in massive stars of solar metallicity , 2007, astro-ph/0702176.

[18]  K. Nomoto,et al.  Supernova Nucleosynthesis in Population III 13-50 M☉ Stars and Abundance Patterns of Extremely Metal-poor Stars , 2007, astro-ph/0701381.

[19]  S. Cristallo,et al.  A method to derive the absolute composition of the Sun, the solar system, and the stars , 2006, astro-ph/0611229.

[20]  F. Käppeler,et al.  The weak sr(p) - Process in massive stars , 2006 .

[21]  L. The,et al.  s-Process Nucleosynthesis in Advanced Burning Phases of Massive Stars , 2006, astro-ph/0609788.

[22]  T. L. Belyaeva,et al.  New γ-ray measurements forC12+C12sub-Coulomb fusion: Toward data unification , 2006 .

[23]  T. Beers,et al.  CS 30322-023: an ultra metal-poor TP-AGB star? , 2006, astro-ph/0605658.

[24]  M. Wiescher,et al.  The Uncertainties in the 22Ne+α-Capture Reaction Rates and the Production of the Heavy Magnesium Isotopes in Asymptotic Giant Branch Stars of Intermediate Mass , 2006, astro-ph/0601645.

[25]  Hamburg,et al.  The Hamburg/ESO R-process enhanced star survey (HERES) - III. HE 0338-3945 and the formation of the r + s stars , 2006, astro-ph/0601476.

[26]  David Arnett,et al.  Active Carbon and Oxygen Shell Burning Hydrodynamics , 2006, astro-ph/0601348.

[27]  Bernd Freytag,et al.  Hydrodynamic simulations of he-shell flash convection , 2006 .

[28]  M. L. Pumo,et al.  The s-process weak component: uncertainties due to convective overshooting , 2005, astro-ph/0501125.

[29]  L. Pasquini,et al.  Chemical abundances and mixing in stars in the milky way and its satellites : proceedings of the ESO-Arcetri Workshop held in Castiglione della Pescaia, Italy, 13-17 September, 2004 , 2006 .

[30]  K. Cunha,et al.  Cu and Zn in different stellar populations: Inferring their astrophysical origin , 2005 .

[31]  G. Goeminne,et al.  Investigation of the (n,p) and (n,α) reactions on 26Al and 36Cl and their astrophysical relevance , 2005 .

[32]  M. Reinecke,et al.  Metallicity effect in multi-dimensional SNIa nucleosynthesis , 2005, astro-ph/0507510.

[33]  A. Jorissen,et al.  BRUSLIB and NETGEN: the Brussels nuclear reaction rate library and nuclear network generator for astrophysics , 2005, astro-ph/0506584.

[34]  F. Käppeler,et al.  Stellar Neutron Capture on Neon Isotopes , 2005 .

[35]  H. Beer,et al.  New Kr Cross Sections and Astrophysical Constraints on Presolar Grains , 2005 .

[36]  I. Ivans,et al.  Near-Ultraviolet Observations of CS 29497-030: New Constraints on Neutron-Capture Nucleosynthesis Processes , 2005, astro-ph/0505002.

[37]  T. Beers,et al.  Hubble Space Telescope Observations of Heavy Elements in Metal-Poor Galactic Halo Stars , 2005 .

[38]  L. The,et al.  Evolution of Massive Stars Up to the End of Central Oxygen Burning , 2004, astro-ph/0407459.

[39]  J. Cernicharo,et al.  The abundance of 36S in IRC+10216 and its production in the Galaxy , 2004, astro-ph/0407003.

[40]  G. Meynet,et al.  Stellar evolution with rotation XII. Pre-supernova models , 2004, astro-ph/0406552.

[41]  M. Reinecke,et al.  Nucleosynthesis in multi-dimensional SN Ia explosions , 2004, astro-ph/0406281.

[42]  P. Molaro,et al.  Cu and Zn in the early Galaxy , 2004, astro-ph/0405050.

[43]  T. Beers,et al.  Spectroscopic Studies of Extremely Metal-Poor Stars with the Subaru High Dispersion Spectrograph. II. The r-Process Elements, Including Thorium , 2004, astro-ph/0402298.

[44]  Jennifer A. Johnson,et al.  The s-Process in Metal-Poor Stars: Abundances for 22 Neutron-Capture Elements in CS 31062-050 , 2004, astro-ph/0402003.

[45]  C. Sneden,et al.  # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. GALACTIC EVOLUTION OF Sr, Y, AND Zr: A MULTIPLICITY OF NUCLEOSYNTHETIC PROCESSES , 2003 .

[46]  A. Davis,et al.  Isotopic Compositions of Strontium, Zirconium, Molybdenum, and Barium in Single Presolar SiC Grains and Asymptotic Giant Branch Stars , 2003 .

[47]  C. R. James,et al.  Chemical Substructure in the Milky Way Halo: A New Population of Old Stars , 2003 .

[48]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[49]  L. Leal,et al.  Neutron Capture Reaction Rates for Silicon and Their Impact on the Origin of Presolar Mainstream SiC Grains , 2003 .

[50]  V. Hill,et al.  The Extremely Metal-poor, Neutron Capture-rich Star CS 22892-052: A Comprehensive Abundance Analysis , 2003, astro-ph/0303542.

[51]  C. Soubiran,et al.  Abundances of Cu and Zn in metal-poor stars: Clues for Galaxy evolution , 2002, astro-ph/0209401.

[52]  P. Mohr,et al.  Neutron capture measurements of the noble gas isotopes 22Ne, 40Ar and 78,80,84,86Kr in the keV energy region , 2002 .

[53]  A. Chieffi,et al.  The production of 26Al, 60Fe and 44Ti in massive stars of solar metallicity , 2002 .

[54]  T. Beers,et al.  The Chemical Composition and Age of the Metal-poor Halo Star BD +17°3248 , 2002, astro-ph/0202429.

[55]  F. Gunsing,et al.  Resonance Neutron Capture in 60Ni below 450 keV. , 2002 .

[56]  Usa,et al.  Nucleosynthesis in Massive Stars with Improved Nuclear and Stellar Physics , 2001, astro-ph/0112478.

[57]  K.-L. Kratz,et al.  (22)Ne(alpha,n)(25)Mg: the key neutron source in massive stars. , 2001, Physical review letters.

[58]  R. Krouse,et al.  Calibrated sulfur isotope abundance ratios of three IAEA sulfur isotope reference materials and V-CDT with a reassessment of the atomic weight of sulfur , 2001 .

[59]  F. Terrasi,et al.  The 12C(α, γ)16O Reaction Rate and the Evolution of Stars in the Mass Range 0.8 ≤ M/M☉ ≤ 25 , 2001, astro-ph/0107172.

[60]  V. Smith,et al.  Nucleosynthesis and Mixing on the Asymptotic Giant Branch. III. Predicted and Observed s-Process Abundances , 2001, astro-ph/0104424.

[61]  O. Serot,et al.  Investigation of the 37Ar (n, p) 37Cl and 37Ar (n, () 34S reactions in the neutron energy range from 10 meV to 100 keV. , 2000 .

[62]  L. The,et al.  Molybdenum and Zirconium Isotopes from a Supernova Neutron Burst , 2000 .

[63]  F. Käppeler,et al.  NEUTRON CROSS SECTIONS FOR NUCLEOSYNTHESIS STUDIES , 2000 .

[64]  F. Thielemann,et al.  Astrophysical reaction rates from statistical model calculations , 2000, astro-ph/0004059.

[65]  A. Chieffi,et al.  Massive Stars in the Range 13-25 M⊙: Evolution and Nucleosynthesis. II. The Solar Metallicity Models , 2000, astro-ph/0003401.

[66]  K. Langanke,et al.  Shell-model calculations of stellar weak interaction rates: II. Weak rates for nuclei in the mass range in supernovae environments , 2000, nucl-th/0001018.

[67]  C. Sneden,et al.  The r-Process-enriched Low-Metallicity Giant HD 115444 , 1999, astro-ph/9910376.

[68]  K. Schwarz,et al.  The Stellar Neutron-Capture Rate of 34S: The Origin of 36S Challenged , 2000 .

[69]  Koichi Iwamoto,et al.  Nucleosynthesis in Chandrasekhar Mass Models for Type Ia Supernovae and Constraints on Progenitor Systems and Burning-Front Propagation , 1999 .

[70]  P. Aguer,et al.  A compilation of charged-particle induced thermonuclear reaction rates , 1999 .

[71]  M. Busso,et al.  Neutron Capture in Low-Mass Asymptotic Giant Branch Stars: Cross Sections and Abundance Signatures , 1999, astro-ph/9906266.

[72]  A. Chieffi,et al.  Evolution and Nucleosynthesis in Low-Mass Asymptotic Giant Branch Stars. II. Neutron Capture and the s-Process , 1998 .

[73]  J. Wheeler,et al.  Type Ia Supernovae: Influence of the Initial Composition on the Nucleosynthesis, Light Curves, and Spectra and Consequences for the Determination of ΩM and Λ , 1997, astro-ph/9709233.

[74]  Christopher Sneden,et al.  Hubble Space Telescope Observations of Neutron-Capture Elements in Very Metal Poor Stars , 1998 .

[75]  R. Vogelaar,et al.  {sup 26}Al(n,p{sub 1}) and (n,{alpha}{sub 0}) cross sections from thermal energy to 70 keV and the nucleosynthesis of {sup 26}Al , 1997 .

[76]  S. Woosley,et al.  The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis , 1995 .

[77]  C. Raiteri,et al.  Reaction rates for O-18(alpha, gamma)Ne-22, Ne-22(alpha, gamma)Mg-26, and Ne-22(alpha, n)Mg-25 in stellar helium burning and s-process nucleosynthesis in massive stars , 1994 .

[78]  S. Woosley,et al.  Galactic Chemical Evolution: Hydrogen Through Zinc , 1994, astro-ph/9411003.

[79]  C. Raiteri,et al.  The Weak s-Component and Nucleosynthesis in Massive Stars , 1993 .

[80]  H. Schatz,et al.  O-17(n, alpha)C-14 - Closure of a primordial CNO bi-cycle? , 1993 .

[81]  S. Woosley,et al.  The alpha -Process and the r-Process , 1992 .

[82]  H. Beer,et al.  On the Calculation of Maxwellian-averaged Capture Cross Sections , 1992 .

[83]  H. Beer,et al.  Measurement of the Se-76(n-gamma) capture cross section and phenomenological s-process studies - The weak component , 1992 .

[84]  C. Raiteri,et al.  S-Processing in Massive Stars as a Function of Metallicity and Interpretation of Observational Trends , 1992 .

[85]  C. Raiteri,et al.  S-process nucleosynthesis in massive stars and the weak component. II - Carbon burning and galactic enrichment , 1991 .

[86]  C. Raiteri,et al.  S-process nucleosynthesis in massive stars and the weak component. I. Evolution and neutron captures in a 25 solar mass star , 1991 .

[87]  A. Chieffi,et al.  Isochrones for hydrogen-burning globular cluster stars. I. The metallicity range (Fe/H) from -2 to -1 , 1989 .

[88]  F. Käppeler,et al.  s-process nucleosynthesis-nuclear physics and the classical model , 1989 .

[89]  O'brien,et al.  14N(n,p)14C cross section from 61 meV to 34.6 keV and its astrophysical implications. , 1989, Physical review. C, Nuclear physics.

[90]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[91]  C. Sneden,et al.  Copper and zinc in very metal-poor stars , 1988 .

[92]  W. Fowler,et al.  Thermonuclear reaction rates V , 1988 .

[93]  Klay,et al.  beta -decay rate of 79mSe and its consequences for the s-process temperature. , 1988, Physical review. C, Nuclear physics.

[94]  K. Nomoto,et al.  Presupernova evolution of massive stars , 1988 .

[95]  K. Takahashi,et al.  Beta-decay rates of highly ionized heavy atoms in stellar interiors , 1987 .

[96]  F. Thielemann,et al.  Hydrostatic nucleosynthesis. II. Core neon to silicon burning and presupernova abundance yields of massive stars , 1985 .

[97]  W. Fowler,et al.  Stellar weak interaction rates for intermediate-mass nuclei. IV - Interpolation procedures for rapidly varying lepton capture rates using effective log (ft)-values , 1985 .

[98]  W. Fowler,et al.  Tables of thermonuclear reaction rates for low-mass nuclei (1 ⩽ Z ⩽ 14) , 1985 .

[99]  D. Clayton Principles of stellar evolution and nucleosynthesis , 1983 .

[100]  W. Arnett,et al.  Aluminum-26 production from a stellar evolutionary sequence , 1978 .

[101]  S. Woosley,et al.  EVOLUTION AND EXPLOSION OF MASSIVE STARS * , 1978, Reviews of Modern Physics.

[102]  W. M. Howard,et al.  Neutron-capture nucleosynthesis in the helium-burning cores of massive stars , 1977 .

[103]  S. Woosley,et al.  Neutron branching in the reaction 12C + 12C , 1977 .

[104]  M. J. Newman,et al.  S-PROCESS Studies: Branching and the Time Scale , 1976 .

[105]  W. Arnett Advanced evolution of massive stars. VI. Oxygen burning , 1974 .

[106]  W. Arnett,et al.  s-process nucleosynthesis in massive stars: core helium burning , 1974 .

[107]  J. Truran,et al.  CARBON-BURNING NUCLEOSYNTHESIS AT CONSTANT TEMPERATURE. , 1969 .

[108]  R. Wagoner Synthesis of the Elements Within Objects Exploding from Very High Temperatures , 1969 .

[109]  J. Peters NUCLEOSYNTHESIS BY THE s-PROCESS IN STARS OF 9 AND 15 SOLAR MASSES. , 1968 .

[110]  F. Hoyle,et al.  Synthesis of the Elements in Stars , 1957 .