Analytic rock abundance distributions and their application to spacecraft landing hazards

[1]  M. Gilmore,et al.  Strategies for safely landing on Venusian tesserae , 2023, Planetary and Space Science.

[2]  R. Lorenz Planetary Landings with Terrain Sensing and Hazard Avoidance : A Review , 2022, Advances in Space Research.

[3]  W. Rao,et al.  Rock Abundance and Erosion Rate at the Zhurong Landing Site in Southern Utopia Planitia on Mars , 2022, Earth and Space Science.

[4]  R. Nagori,et al.  Analysis of boulders population around a young crater using very high resolution image of Orbiter High Resolution Camera (OHRC) on board Chandrayaan-2 mission , 2022, Icarus.

[5]  Wai Chung Liu,et al.  Landing Site Selection and Characterization of Tianwen‐1 (Zhurong Rover) on Mars , 2022, Journal of Geophysical Research: Planets.

[6]  M. Golombek,et al.  Flying a Helicopter on Mars: How Ingenuity's Flights were Planned, Executed, and Analyzed , 2022, 2022 IEEE Aerospace Conference (AERO).

[7]  Xiaohui Cui,et al.  Surface characteristics of the Zhurong Mars rover traverse at Utopia Planitia , 2022, Nature Geoscience.

[8]  R. Lorenz,et al.  Wind and surface roughness considerations for seismic instrumentation on a relocatable lander for Titan , 2021 .

[9]  J. Grant,et al.  Rock Size‐Frequency Distributions at the InSight Landing Site, Mars , 2021, Earth and Space Science.

[10]  K. Stack,et al.  Characterizing landing site safety on Venus using Venera panoramas and Magellan radar properties , 2021, Icarus.

[11]  E. Karkoschka,et al.  Selection and Characteristics of the Dragonfly Landing Site near Selk Crater, Titan , 2021, The Planetary Science Journal.

[12]  C. Russell,et al.  The Boulder Population of Asteroid 4 Vesta: Size‐Frequency Distribution and Survival Time , 2020, Earth and Space Science.

[13]  S. Loew,et al.  Impacts drive lunar rockfalls over billions of years , 2020, Nature Communications.

[14]  Ralph D. Lorenz,et al.  How far is far enough? Requirements derivation for planetary mobility systems , 2020 .

[15]  Soumyo Dutta,et al.  EDL Simulation Results for the Mars 2020 Landing Site Safety Assessment , 2020, 2020 IEEE Aerospace Conference.

[16]  A. Airo,et al.  New types of boulder accumulations in the hyper-arid Atacama Desert , 2020, Geomorphology.

[17]  Hirotaka Sawada,et al.  Boulder size and shape distributions on asteroid Ryugu , 2019, Icarus.

[18]  Ralph D. Lorenz,et al.  Calculating risk and payoff in planetary exploration and life detection missions , 2019, Advances in Space Research.

[19]  D. N. DellaGiustina,et al.  Properties of rubble-pile asteroid (101955) Bennu from OSIRIS-REx imaging and thermal analysis , 2019, Nature Astronomy.

[20]  M. K. Crombie,et al.  The Unexpected Surface of Asteroid (101955) Bennu , 2019, Nature.

[21]  Bo Wu,et al.  Rock Abundance and Crater Density in the Candidate Chang'E‐5 Landing Region on the Moon , 2018, Journal of Geophysical Research: Planets.

[22]  Kenneth E. Hibbard,et al.  Dragonfly: A rotorcraft lander concept for scientific exploration at titan , 2018 .

[23]  Yuan Li,et al.  Analysis of Rock Abundance on Lunar Surface From Orbital and Descent Images Using Automatic Rock Detection , 2018 .

[24]  B. Jolliff,et al.  Boulder Distributions Around Young, Small Lunar Impact Craters and Implications for Regolith Production Rates and Landing Site Safety , 2018, Journal of Geophysical Research: Planets.

[25]  K. Gwinner,et al.  Selection of the InSight Landing Site , 2017 .

[26]  A. Lucas,et al.  Texture and Composition of Titan's Equatorial Sand Seas Inferred From Cassini SAR Data: Implications for Aeolian Transport and Dune Morphodynamics , 2017, Journal of Geophysical Research: Planets.

[27]  M. Golombek,et al.  Characteristics of terrestrial basaltic rock populations: Implications for Mars lander and rover science and safety , 2016 .

[28]  P. Michel,et al.  The Brazil nut effect and its application to asteroids , 2014, 1407.2748.

[29]  M. Watkins,et al.  Selection of the Mars Science Laboratory Landing Site , 2012 .

[30]  B. Marticorena,et al.  An aerodynamic roughness length map derived from extended Martian rock abundance data , 2012 .

[31]  A. Vasavada,et al.  Lunar surface rock abundance and regolith fines temperatures derived from LRO Diviner Radiometer data , 2011 .

[32]  R. Lorenz On the statistical distribution of dust devil diameters , 2011 .

[33]  Ralph D. Lorenz,et al.  Planetary penetrators: Their origins, history and future , 2011 .

[34]  H. Melosh,et al.  Distributions of boulders ejected from lunar craters , 2010 .

[35]  Raymond E. Arvidson,et al.  Phoenix Landing Site Hazard Assessment and Selection , 2009 .

[36]  H. Zebker,et al.  Radar-bright channels on Titan , 2009 .

[37]  H. Keller,et al.  The properties of Titan's surface at the Huygens landing site from DISR observations , 2008 .

[38]  D.S. Adams,et al.  Phoenix Mars Scout Landing Risk Assessment , 2008, 2008 IEEE Aerospace Conference.

[39]  Raymond E. Arvidson,et al.  Size-frequency distributions of rocks on the northern plains of Mars with special reference to Phoenix landing surfaces , 2008 .

[40]  P. Schultz,et al.  The geology of the Viking Lander 2 site revisited , 2007 .

[41]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[42]  Howard A. Zebker,et al.  Electrical properties of Titan's surface from Cassini RADAR scatterometer measurements , 2007 .

[43]  S. Nowicki,et al.  Rock abundance on Mars from the Thermal Emission Spectrometer , 2007 .

[44]  J. A. Grant,et al.  Distribution of rocks on the Gusev Plains and on Husband Hill, Mars , 2006 .

[45]  Rebecca Castano,et al.  Geology of the Gusev cratered plains from the Spirit rover transverse , 2006 .

[46]  Raymond E. Arvidson,et al.  The size‐frequency and areal distribution of rock clasts at the Spirit landing site, Gusev Crater, Mars , 2005 .

[47]  J F Bell,et al.  Surficial Deposits at Gusev Crater Along Spirit Rover Traverses , 2004, Science.

[48]  N. Lancaster Relations between aerodynamic and surface roughness in a hyper‐arid cold desert: McMurdo Dry Valleys, Antarctica , 2004 .

[49]  A. F. C. Haldemann,et al.  Rock size-frequency distributions on Mars and implications for Mars Exploration Rover landing safety and operations : Mars exploration rover mission and landing sites , 2003 .

[50]  R. Kuzmin,et al.  An Engineering Model for the Phobos Surface , 2003 .

[51]  Andrew E. Johnson,et al.  Lidar-Based Hazard Avoidance for Safe Landing on Mars , 2002 .

[52]  Douglas E. Bernard,et al.  Crater and rock hazard modeling for Mars landing , 2001 .

[53]  N. Izenberg,et al.  Imaging of Small-Scale Features on 433 Eros from NEAR: Evidence for a Complex Regolith , 2001, Science.

[54]  B. Campbell Radar Backscatter from Mars: Properties of Rock-Strewn Surfaces , 2001 .

[55]  D. Crown,et al.  Block size distributions on silicic lava flow surfaces: Implications for emplacement conditions , 1998 .

[56]  R. J. Reid,et al.  Results from the Mars Pathfinder camera. , 1997, Science.

[57]  M. Golombek,et al.  Size‐frequency distributions of rocks on Mars and Earth analog sites: Implications for future landed missions , 1997 .

[58]  M. Malin Rock populations as indicators of geologic processes. , 1988 .

[59]  J. Head,et al.  Characterization of rock populations on planetary surfaces: Techniques and a preliminary analysis of Mars and Venus , 1981 .

[60]  Kenneth L. Jones,et al.  The geology of the Viking Lander 1 site , 1977 .

[61]  W. F. Rogers Apollo experience report: Lunar module landing gear subsystem , 1972 .

[62]  M. H. Hait,et al.  Lunar Regolith at Tranquillity Base , 1970, Science.

[63]  W. Hartmann Terrestrial, lunar, and interplanetary rock fragmentation , 1969 .

[64]  Bruce G. Smith Boulder distribution analysis of the Luna 9 photographs , 1967 .

[65]  Wai Chung Liu,et al.  Centimeter-resolution topographic modeling and fine-scale analysis of craters and rocks at the Chang'E-4 landing site , 2021 .

[66]  Kaichang Di,et al.  Rock size-frequency distribution analysis at the Chang’E-3 landing site , 2016 .

[67]  A. Huertas,et al.  Detection and Characterization of Rocks and Rock Size-Frequency Distributions at the Final Four Mars Science Laboratory Landing Sites , 2012 .

[68]  J. Pelletier,et al.  Wind-driven reorganization of coarse clasts on the surface of Mars , 2009 .

[69]  M. Mellon,et al.  Geomorphic and geologic settings of the Phoenix Lander mission landing site , 2009 .

[70]  S. Anderson,et al.  Distinguishing between primary and secondary emplacement events of blocky volcanic deposits using rock size distributions , 2005 .

[71]  O. Nikolaeva,et al.  The surface of Venus as revealed by the Venera landings: Part II , 1985 .

[72]  D. Merchant,et al.  Monte Carlo Dynamic Analysis for Lunar Module Landing Loads , 1971 .

[73]  M. Mantus,et al.  Landing dynamics of the lunar excursion module. , 1966 .