Growth control of Ga(As)Sb quantum dots (QD) on GaAs with reflectance anisotropy spectroscopy (RAS)

Ga(As)Sb quantum dots (QDs) are grown on GaAs substrate in the Stranski-Krastanov mode. The molecular beam epitaxial (MBE) growth is monitored by reflectance anisotropy spectroscopy (RAS). For certain photon energies of the light used for RAS, the RAS signal values for GaAs layers, GaSb layers, and Ga(As)Sb QD surface morphologies can clearly be distinguished. The finding verifies that RAS is a valuable tool to identify growth of these QDs.

[1]  A. A. Studna,et al.  Optical reflectance measurements of transients during molecular‐beam epitaxial growth on (001) GaAs , 1988 .

[2]  Dieter Bimberg,et al.  Temporal evolution of GaSb/GaAs quantum dot formation , 2001 .

[3]  Leonard C. Feldman,et al.  Electronic thin film science : for electrical engineers and materials scientists , 1996 .

[4]  Nikolai N. Ledentsov,et al.  RADIATIVE RECOMBINATION IN TYPE-II GASB/GAAS QUANTUM DOTS , 1995 .

[5]  Nikolai N. Ledentsov,et al.  CARRIER DYNAMICS IN TYPE-II GASB/GAAS QUANTUM DOTS , 1998 .

[6]  F. Bechstedt,et al.  REFLECTANCE ANISOTROPY OF GAAS(100) : THEORY AND EXPERIMENT , 1998 .

[7]  Diana L. Huffaker,et al.  Lasing characteristics of GaSb∕GaAs self-assembled quantum dots embedded in an InGaAs quantum well , 2007 .

[8]  Jacek A. Majewski,et al.  Modeling of Semiconductor Nanostructures with nextnano 3 , 2006 .

[9]  A. Forchel,et al.  Experimental and theoretical study of strain-induced AlGaAs/GaAs quantum dots using a self-organized GaSb island as a stressor , 1999 .

[10]  W. Richter,et al.  Real-time monitoring of MOVPE device growth by reflectance anisotropy spectroscopy and related optical techniques , 1998 .

[11]  A. Schliwa,et al.  Linking structural and electronic properties of high-purity self-assembled GaSb/GaAs quantum dots , 2012 .

[12]  D. Kisker,et al.  Investigation of the relationship between reflectance difference spectroscopy and surface structure using grazing incidence X-ray scattering , 1995 .

[13]  W. Richter,et al.  Stranski-Krastanov formation of InAs quantum dots monitored during growth by reflectance anisotropy spectroscopy and spectroscopic ellipsometry , 1997 .

[14]  H. Fouckhardt,et al.  Generation of Dense Lying Ga(As)Sb Quantum Dots for Efficient Quantum Dot Lasers , 2013 .

[15]  D. Aspnes Above-bandgap optical anisotropies in cubic semiconductors: A visible-near ultraviolet probe of surfaces , 1985 .

[16]  Young,et al.  Electronic and optical properties of III-V and II-VI semiconductor superlattices. , 1990, Physical review. B, Condensed matter.

[17]  Diana L. Huffaker,et al.  Epitaxial growth and formation of interfacial misfit array for tensile GaAs on GaSb , 2007 .

[18]  Diana L. Huffaker,et al.  III/V ratio based selectivity between strained Stranski-Krastanov and strain-free GaSb quantum dots on GaAs , 2006 .

[19]  Brian R. Bennett,et al.  Photoluminescence studies of self‐assembled InSb, GaSb, and AlSb quantum dot heterostructures , 1996 .

[20]  Richard A. Hogg,et al.  Optical spectroscopy of self-assembled type II GaSb/GaAs quantum dot structures grown by molecular beam epitaxy , 1998 .

[21]  Dirk Hoffmann,et al.  Dense lying GaSb quantum dots on GaAs by Stranski-Krastanov growth , 2011, OPTO.

[22]  Dieter Bimberg,et al.  Structure and intermixing of GaSb∕GaAs quantum dots , 2004 .

[23]  Diana L. Huffaker,et al.  GaSb∕GaAs type II quantum dot solar cells for enhanced infrared spectral response , 2007 .

[24]  O. Hunderi,et al.  Ellipsometric and reflectance-anisotropy measurements on rotating samples , 1998 .

[25]  H. Fouckhardt,et al.  Dense lying self-organized GaAsSb quantum dots on GaAs for efficient lasers , 2011, Beilstein journal of nanotechnology.

[26]  M. Grundmann The Physics of Semiconductors: An Introduction Including Devices and Nanophysics , 2006 .

[27]  D. Huffaker,et al.  Formation and optical characteristics of strain-relieved and densely stacked GaSb∕GaAs quantum dots , 2006 .

[28]  Dieter Bimberg,et al.  450 meV hole localization in GaSb/GaAs quantum dots , 2003 .

[29]  A. Forchel,et al.  Growth of self-organized GaSb islands on a GaAs surface by molecular beam epitaxy , 1999 .

[30]  John E. Bowers,et al.  Optical investigations of the dynamic behavior of GaSb/GaAs quantum dots , 1996 .

[31]  W. Richter,et al.  In situ monitoring of InAs-on-GaAs quantum dot formation in MOVPE by reflectance-anisotropy-spectroscopy and ellipsometry , 1996 .

[32]  D. Bimberg,et al.  The QD-Flash: a quantum dot-based memory device , 2010 .

[33]  Flórez,et al.  Optical reflectance and electron diffraction studies of molecular-beam-epitaxy growth transients on GaAs(001). , 1987, Physical review letters.

[34]  W. Richter,et al.  Optical characterization of surface electronic and vibrational properties of epitaxial antimony monolayers on III-V(110) surfaces , 1995 .

[35]  P. Vogl,et al.  nextnano: General Purpose 3-D Simulations , 2007, IEEE Transactions on Electron Devices.

[36]  D. Bimberg,et al.  Real-time control of quantum dot laser growth using reflectance anisotropy spectroscopy , 2004 .

[37]  Henning Fouckhardt,et al.  Efficient Ga(As)Sb quantum dot emission in AlGaAs by GaAs intermediate layer , 2013, Photonics West - Optoelectronic Materials and Devices.

[38]  Aspnes,et al.  Anisotropies in the above-bandgap optical spectra of cubic semiconductors. , 1985, Physical review letters.

[39]  J. P. Harbison,et al.  Application of reflectance difference spectroscopy to molecular‐beam epitaxy growth of GaAs and AlAs , 1988 .

[40]  D. Huffaker,et al.  800 meV localization energy in GaSb/GaAs/Al0.3Ga0.7As quantum dots , 2013 .

[41]  C. Matthai,et al.  REVIEW ARTICLE: Aspects of reflectance anisotropy spectroscopy from semiconductor surfaces , 1998 .