Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions

Abstract. Mobility particle size spectrometers often referred to as DMPS (Differential Mobility Particle Sizers) or SMPS (Scanning Mobility Particle Sizers) have found a wide range of applications in atmospheric aerosol research. However, comparability of measurements conducted world-wide is hampered by lack of generally accepted technical standards and guidelines with respect to the instrumental set-up, measurement mode, data evaluation as well as quality control. Technical standards were developed for a minimum requirement of mobility size spectrometry to perform long-term atmospheric aerosol measurements. Technical recommendations include continuous monitoring of flow rates, temperature, pressure, and relative humidity for the sheath and sample air in the differential mobility analyzer. We compared commercial and custom-made inversion routines to calculate the particle number size distributions from the measured electrical mobility distribution. All inversion routines are comparable within few per cent uncertainty for a given set of raw data. Furthermore, this work summarizes the results from several instrument intercomparison workshops conducted within the European infrastructure project EUSAAR (European Supersites for Atmospheric Aerosol Research) and ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network) to determine present uncertainties especially of custom-built mobility particle size spectrometers. Under controlled laboratory conditions, the particle number size distributions from 20 to 200 nm determined by mobility particle size spectrometers of different design are within an uncertainty range of around ±10% after correcting internal particle losses, while below and above this size range the discrepancies increased. For particles larger than 200 nm, the uncertainty range increased to 30%, which could not be explained. The network reference mobility spectrometers with identical design agreed within ±4% in the peak particle number concentration when all settings were done carefully. The consistency of these reference instruments to the total particle number concentration was demonstrated to be less than 5%. Additionally, a new data structure for particle number size distributions was introduced to store and disseminate the data at EMEP (European Monitoring and Evaluation Program). This structure contains three levels: raw data, processed data, and final particle size distributions. Importantly, we recommend reporting raw measurements including all relevant instrument parameters as well as a complete documentation on all data transformation and correction steps. These technical and data structure standards aim to enhance the quality of long-term size distribution measurements, their comparability between different networks and sites, and their transparency and traceability back to raw data.

Chunsheng Zhao | Pasi Aalto | Erik Swietlicki | Paul Quincey | Thomas Tuch | Alfred Wiedensohler | Hans-Georg Horn | Roy M. Harrison | Martin Gysel | Paul I. Williams | Ernest Weingartner | David C. S. Beddows | Karine Sellegri | Peter H. McMurry | Paolo Laj | Christoph Hüglin | Wolfram Birmili | A. Marinoni | Eija Asmi | Bas Henzing | Kay Weinhold | C. O'Dowd | G. Leeuw | R. Harrison | Chunsheng Zhao | E. Asmi | T. Tuch | S. Jennings | K. Sellegri | B. Wehner | P. Laj | P. Mcmurry | J. Ogren | D. Beddows | M. Fiebig | E. Swietlicki | A. Nowak | A. Wiedensohler | W. Birmili | E. Weingartner | A. Marinoni | P. Aalto | B. Henzing | K. Weinhold | F. Riccobono | P. Quincey | M. Gysel | P. Williams | M. Moerman | L. Keck | Markus Fiebig | Colin D. O'Dowd | John A. Ogren | Pontus Roldin | P. Roldin | G. de Leeuw | Birgit Wehner | S. G. Jennings | R. Fierz-Schmidhauser | S. Santos | C. Hüglin | G. Löschau | C. Grüning | H. Horn | A. Nowak | Francesco Riccobono | A. Sonntag | Jacob H. Scheckman | Sascha Pfeifer | R. Fierz-Schmidhauser | Ciaran Monahan | Jingkun Jiang | K. H. Faloon | H. Venzac | P. Villani | M. Merkel | A. M. Fjäraa | R. Depuy | Sebastiao Martins Dos Santos | L. Keck | Z. Z. Deng | M. Moerman | Gunter Löschau | S. Bastian | S. Pfeifer | S. Bastian | C. Monahan | K. Faloon | P. Villani | M. Merkel | J. Scheckman | H. Venzac | P. I. Williams | A. Sonntag | R. Depuy | C. Grüning | Z. Deng | Jing Jiang | C. O’Dowd | Colin D. O'Dowd | M. Fiebig | B. Wehner | W. Birmili | A. Nowak | R. Depuy | P. Villani | S. G. Jennings | Hans-Georg Horn | L. Keck | Z. Deng | S. Bastian | R. M. Harrison | Jingkun Jiang | Chunsheng Zhao

[1]  A. Wiedensohler,et al.  Long term measurements of submicrometer urban aerosols: statistical analysis for correlations with meteorological conditions and trace gases , 2002 .

[2]  T. Tuch,et al.  Comparability of three spectrometers for monitoring urban aerosol , 2001 .

[3]  John H. Seinfeld,et al.  Improved Inversion of Scanning DMA Data , 2002 .

[4]  M. Stolzenburg,et al.  Equations Governing Single and Tandem DMA Configurations and a New Lognormal Approximation to the Transfer Function , 2008 .

[5]  Intercomparison of mobility particle sizers (MPS) , 2001 .

[6]  A. Wiedensohler,et al.  Determination of Differential Mobility Analyzer Transfer Functions Using Identical Instruments in Series , 1997 .

[7]  A. Berner,et al.  A new electromobility spectrometer for the measurement of aerosol size distributions in the size range from 1 to 1000 nm , 1991 .

[8]  Klaus Willeke,et al.  Aerosol Measurement: Principles, Techniques, and Applications , 2001 .

[9]  H. Hansson,et al.  One year boundary layer aerosol size distribution data from five nordic background stations , 2003 .

[10]  E. Knutson EXTENDED ELECTRIC MOBILITY METHOD FOR MEASURING AEROSOL PARTICLE SIZE AND CONCENTRATION , 1976 .

[11]  J. Hudson,et al.  Intercomparison Study of the Size-Dependent Counting Efficiency of 26 Condensation Particle Counters , 1997 .

[12]  Heinz Fissan,et al.  Design and evaluation of a nanometer aerosol differential mobility analyzer (Nano-DMA) , 1998 .

[13]  B. Wehner,et al.  Particle counting efficiencies of new TSI condensation particle counters , 2007 .

[14]  A. Reineking,et al.  Measurements of Particle Loss Functions in a Differential Mobility Analyzer (TSI, Model 3071) for Different Flow Rates , 1986 .

[15]  John H. Seinfeld,et al.  Asymmetric Instrument Response Resulting from Mixing Effects in Accelerated DMA-CPC Measurements , 1995 .

[16]  Benjamin Y. H. Liu,et al.  A submicron aerosol standard and the primary, absolute calibration of the condensation nuclei counter , 1974 .

[17]  K. Okuyama,et al.  Determination of particle size distribution of ultra-fine aerosols using a differential mobility analyzer , 1985 .

[18]  R. Flagan,et al.  Please Scroll down for Article Aerosol Science and Technology Transfer Functions and Penetrations of Five Differential Mobility Analyzers for Sub-2 Nm Particle Classification Transfer Functions and Penetrations of Five Differential Mobility Analyzers for Sub-2 Nm Particle Classification , 2022 .

[19]  A. Petzold,et al.  Hygroscopic Properties of Sub-micrometer Atmospheric Aerosol Particles Measured with H-TDMA Instruments in Various Environments – A Review , 2007 .

[20]  R. Flagan,et al.  Resolution of the radial differential mobility analyzer for ultrafine particles , 1996 .

[21]  G. Mulholland,et al.  Calibration of a Condensation Particle Counter Using a NIST Traceable Method , 2009 .

[22]  Jingchuan Zhou Hygroscopic Properties of Atmospheric Aerosol Particles in Various Environments , 2001 .

[23]  Alfred Wiedensohler,et al.  Atmospheric particle number size distribution in central Europe: Statistical relations to air masses and meteorology , 2001 .

[24]  C. O'Dowd,et al.  Number size distributions and seasonality of submicron particles in europe 2008–2009 , 2011 .

[25]  J. Seinfeld,et al.  Diffusional losses in particle sampling systems containing bends and elbows , 2002 .

[26]  H. Spoelstra,et al.  A high-resolution electrical mobility aerosol spectrometer (MAS) , 1983 .

[27]  A. Petzold,et al.  Inversion of data containing information on the aerosol particle size distribution using multiple instruments , 2005 .

[28]  R. Flagan On Differential Mobility Analyzer Resolution , 1999 .

[29]  A. Wiedensohler,et al.  An approximation of the bipolar charge distribution for particles in the submicron size range , 1988 .

[30]  U. Baltensperger,et al.  Seasonal and diurnal variation of aerosol size distributions (10 < D < 750 nm) at a high-alpine site (Jungfraujoch 3580 m asl) , 1999 .

[31]  Donald E. Hagen,et al.  Linear inversion method to obtain aerosol size distributions from measurements with a differential mobility analyzer , 1983 .

[32]  H. Wichmann,et al.  Variation of particle number and mass concentration in various size ranges of ambient aerosols in Eastern Germany , 1997 .

[33]  U. Baltensperger,et al.  Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments—a review , 2008 .

[34]  Charles Hagwood,et al.  The DMA transfer function with Brownian motion a trajectory/Monte-Carlo approach , 1999 .

[35]  K. T. Whitby,et al.  Aerosol classification by electric mobility: apparatus, theory, and applications , 1975 .

[36]  T. Martonen,et al.  Simultaneous Sedimentation and Impaction of Aerosols in Two-Dimensional Channel Bends , 1990 .

[37]  David Y. H. Pui,et al.  Measurement of 100 nm and 60 nm Particle Standards by Differential Mobility Analysis , 2006, Journal of research of the National Institute of Standards and Technology.

[38]  G. M. Frick,et al.  Ion—Aerosol Attachment Coefficients and the Steady-State Charge Distribution on Aerosols in a Bipolar Ion Environment , 1986 .

[39]  Peter H. McMurry,et al.  An Ultrafine Aerosol Condensation Nucleus Counter , 1991 .

[40]  M. L. Laucks,et al.  Aerosol Technology Properties, Behavior, and Measurement of Airborne Particles , 2000 .

[41]  Peter Sturm,et al.  Aerosol and NO x emission factors and submicron particle number size distributions in two road tunnels with different traffic regimes , 2005 .

[42]  H. G. Scheibel,et al.  Generation of monodisperse Ag- and NaCl-aerosols with particle diameters between 2 and 300 nm , 1983 .

[43]  T. Tuch,et al.  Design and performance of an automatic regenerating adsorption aerosol dryer for continuous operation at monitoring sites , 2009 .

[44]  T. Müller,et al.  In situ measurements of optical properties at Tinfou (Morocco) during the Saharan Mineral Dust Experiment SAMUM 2006 , 2009 .

[45]  N. Fuchs,et al.  On the stationary charge distribution on aerosol particles in a bipolar ionic atmosphere , 1963 .

[46]  Jugal K. Agarwal,et al.  Continuous flow, single-particle-counting condensation nucleus counter , 1980 .

[47]  Richard C. Flagan,et al.  Scanning Electrical Mobility Spectrometer , 1989 .

[48]  Albert Ansmann,et al.  A case of extreme particulate matter concentrations over Central Europe caused by dust emitted over the southern Ukraine , 2008 .

[49]  J. Mäkelä,et al.  Closed-loop arrangement with critical orifice for DMA sheath/excess flow system , 1997 .

[50]  Roy M. Harrison,et al.  Primary particle formation from vehicle emissions during exhaust dilution in the roadside atmosphere , 2003 .

[51]  Detlef Hummes,et al.  Experimental Comparison of Four Differential Mobility Analyzers for Nanometer Aerosol Measurements , 1996 .

[52]  J. Keskinen,et al.  Towards traceable particle number concentration standard: Single charged aerosol reference (SCAR) , 2010 .

[53]  M. Karlsson,et al.  Methods to measure and predict the transfer function size dependence of individual DMAs , 2003 .

[54]  David Y. H. Pui,et al.  Slip Correction Measurements of Certified PSL Nanoparticles Using a Nanometer Differential Mobility Analyzer (Nano-DMA) for Knudsen Number From 0.5 to 83 , 2005, Journal of research of the National Institute of Standards and Technology.

[55]  Pasi Aalto,et al.  One-Year Data of Submicron Size Modes of Tropospheric Background Aerosol in Southern Finland , 2000 .

[56]  W. A. Hoppel Determination of the aerosol size distribution from the mobility distribution of the charged fraction of aerosols , 1978 .

[57]  D. Covert,et al.  Particle Charging and Transmission Efficiencies of Aerosol Charge Neutralizes , 1997 .

[58]  Da-Ren Chen,et al.  Measurement of Atlanta Aerosol Size Distributions: Observations of Ultrafine Particle Events , 2001 .

[59]  Heinz Fissan,et al.  Determination of particle size distributions by means of an electrostatic classifier , 1983 .

[60]  F. Stratmann,et al.  A new data inversion algorithm for DMPS-measurements , 1996 .

[61]  R. Gunn,et al.  THE HYPERELECTRIFICATION OF RAINDROPS BY ATMOSPHERIC ELECTRIC FIELDS , 1956 .

[62]  A. Wiedensohler,et al.  DESIGN OF A DMA-BASED SIZE SPECTROMETER FOR A LARGE PARTICLE SIZE RANGE AND STABLE OPERATION , 1999 .