Proportional multiple-integral observer design for discrete-time descriptor linear systems

A type of proportional multiple-integral observers is proposed for discrete-time descriptor linear systems. First, some existence conditions of this type of observers are given. Then, a parametric design approach is proposed for proportional multiple-integral observers. Based on a general parametric solution to the generalised Sylvester-observer matrix equation, parameterisations for all the observer gains are given in terms of four parameter matrices. The proposed approach can offer all the degrees of design freedom and has great potential in applications. A numerical example is given to show the design procedure and the effectiveness of the proposed approach.

[1]  Guo-Ping Liu,et al.  Eigenstructure assignment design for proportional-integral observers: continuous-time case , 2001 .

[2]  Ai-Guo Wu,et al.  Impulsive-mode controllablisability in descriptor linear systems , 2007 .

[3]  D. Ho,et al.  Proportional multiple-integral observer design for descriptor systems with measurement output disturbances , 2004 .

[4]  L. Dai Observers for discrete singular systems , 1988 .

[5]  Peter C. Müller,et al.  Design of a class of Luenberger observers for descriptor systems , 1995, IEEE Trans. Autom. Control..

[6]  B. Shafai,et al.  Robust control system design with a proportional integral observer , 1989 .

[7]  Tae Kyeong Yeu,et al.  Fault Detection in Linear Descriptor Systems Via Unknown Input PI Observer , 2000 .

[8]  Ai-Guo Wu,et al.  Design of PI Observers for Continuous-Time Descriptor Linear Systems , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[9]  Mohamed Darouach Solution to Sylvester equation associated to linear descriptor systems , 2006, Syst. Control. Lett..

[10]  Xin-Zhuang Dong State observer design and stabilization control for a class of nonlinear systems , 2008, Int. J. Syst. Sci..

[11]  J. Alvarez,et al.  Dissipativity-based observer and feedback control design for a class of chemical reactors☆ , 2008 .

[12]  Saïd Mammar,et al.  Design of proportional-integral observer for unknown input descriptor systems , 2002, IEEE Trans. Autom. Control..

[13]  Christian Commault,et al.  Observer-based fault detection and isolation for structured systems , 2002, IEEE Trans. Autom. Control..

[14]  R. Carroll,et al.  Design of a minimal-order observer for singular systems , 1987 .

[15]  Guang-Ren Duan,et al.  Eigenstructure assignment in descriptor systems via output feedback: A new complete parametric approach , 1999 .

[16]  F. Lewis,et al.  Geometric structure and feedback in singular systems , 1989 .

[17]  R. Carroll,et al.  Design of proportional-integral observer for linear time-varying multivariable systems , 1985, 1985 24th IEEE Conference on Decision and Control.

[18]  Ai-Guo Wu,et al.  Robust fault detection in linear systems based on PI observers , 2006, Int. J. Syst. Sci..

[19]  B. Datta,et al.  An algorithm for generalized Sylvester-observer equation in state estimation of descriptor systems , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[20]  P. Müller,et al.  State estimation of dynamical systems with nonlinearities by using proportional-integral observer , 1995 .

[21]  Guo-Ping Jiang,et al.  Design of observer with integrators for linear systems with unknown input disturbances , 2000 .

[22]  Ai-Guo Wu,et al.  Solution to the generalised sylvester matrix equation AV + BW = AVF , 2007 .

[23]  João Carvalho,et al.  A new block algorithm for full-rank solution of the Sylvester-observer equation , 2003, IEEE Trans. Autom. Control..

[24]  Damien Koenig,et al.  Unknown input proportional multiple-integral observer design for linear descriptor systems: application to state and fault estimation , 2005, IEEE Transactions on Automatic Control.

[25]  C. T. Pi,et al.  Simultaneous disturbance attenuation and fault detection using proportional integral observers , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[26]  Basil G. Mertzios Leverrier's algorithm for singular systems , 1984 .

[27]  Lothar Reichel,et al.  On the solution of large Sylvester-observer equations , 2001, Numer. Linear Algebra Appl..

[28]  Guang-Ren Duan,et al.  Eigenstructure assignment and response analysis in descriptor linear systems with state feedback control , 1998 .

[29]  Krishna Busawon,et al.  On the design of integral and proportional integral observers , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[30]  Chun-Yi Su,et al.  Observer design for discrete-time systems subject to time-delay nonlinearities , 2006, Int. J. Syst. Sci..

[31]  T. KACZOREK Proportional-integral observers for linear multivariable time-varying systems /Proportional-Integral-Beobachter für lineare, zeitvariable Mehrgrößensysteme , 1979 .

[32]  Yun Zou,et al.  Analysis of impulsive modes and Luenberger observers for descriptor systems , 2001, Syst. Control. Lett..

[33]  R. Mukundan,et al.  On the design of observers for generalized state space systems using singular value decomposition , 1983 .

[34]  I-Kong Fong,et al.  H∞ Filter Design for Uncertain Discrete-Time Singular Systems via Normal Transformation , 2006 .

[35]  Da-Wei Gu,et al.  A robust state observer scheme , 2001, IEEE Trans. Autom. Control..

[36]  G. R. DUAN,et al.  Solution to matrix equation AV + BW = EVF and eigenstructure assignment for descriptor systems , 1992, Autom..