Business Intelligence Indicators: Types, Models and Implementation

Nowadays, more and more data are available for decisional analysis and decision-making based on different indicators. Although different decision-making technologies have been developed, the authors note the lack of a conceptual framework for the definition and implementation of these indicators. In this paper, they propose a first classification of these indicators. Furthermore, motivated by the need for formalism for the definition of these indicators at a conceptual level, they present the Business Intelligence Indicators BI2 UML profile to represent indicators for OLAP, OLTP and streaming technologies. They also present their implementation in existing industrial tools. In addition, they show how these indicators can coexist in the same environment to exchange data through a chaining model and its implementation.

[1]  Gerald Weber,et al.  R-MESHJOIN for near-real-time data warehousing , 2010, DOLAP '10.

[2]  Esteban Zimányi,et al.  BPMN-Based Conceptual Modeling of ETL Processes , 2012, DaWaK.

[3]  Yvan Bédard,et al.  Handling evolutions in multidimensional structures , 2003, Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405).

[4]  Alfredo Cuzzocrea,et al.  Data warehousing and OLAP over big data: current challenges and future research directions , 2013, DOLAP '13.

[5]  Shashi Shekhar,et al.  Spatial big-data challenges intersecting mobility and cloud computing , 2012, MobiDE '12.

[6]  Yixin Chen,et al.  Stream Cube: An Architecture for Multi-Dimensional Analysis of Data Streams , 2005, Distributed and Parallel Databases.

[7]  Paolo Giorgini,et al.  GRAnD: A goal-oriented approach to requirement analysis in data warehouses , 2008, Decis. Support Syst..

[8]  Matteo Golfarelli,et al.  A Survey on Temporal Data Warehousing , 2009, Int. J. Data Warehous. Min..

[9]  Themis Palpanas,et al.  Integrated model-driven dashboard development , 2007, Inf. Syst. Frontiers.

[10]  Stefano Rizzi,et al.  ProtOLAP: rapid OLAP prototyping with on-demand data supply , 2013, DOLAP '13.

[11]  Bruce Powel Douglass Real Time UML: Advances in the UML for Real-Time Systems (3rd Edition) , 2004 .

[12]  Veda C. Storey,et al.  Business Intelligence and Analytics: From Big Data to Big Impact , 2012, MIS Q..

[13]  Alberto Abelló,et al.  A Survey of Multidimensional Modeling Methodologies , 2009, Int. J. Data Warehous. Min..

[14]  Esteban Zimányi,et al.  A BPMN-Based Design and Maintenance Framework for ETL Processes , 2013, Int. J. Data Warehous. Min..

[15]  Esteban Zimányi,et al.  A conceptual model for temporal data warehouses and its transformation to the ER and the object-relational models , 2008, Data Knowl. Eng..

[16]  PinetFrancois,et al.  Conceptual model for spatial data cubes , 2015 .

[17]  Giuseppe Polese,et al.  Visual data integration based on description logic reasoning , 2014, IDEAS.

[18]  Robert Laurini,et al.  A visual language for querying spatio-temporal databases , 1999, GIS '99.

[19]  José Samos,et al.  YAM2: a multidimensional conceptual model extending UML , 2006, Inf. Syst..

[20]  Jose-Norberto Mazón,et al.  Modelling ETL Processes of Data Warehouses with UML Activity Diagrams , 2008, OTM Workshops.

[21]  Sandro Bimonte BI2 : Un profil UML pour les Indicateurs Décisionnels , 2015, EDA.

[22]  Ralph Kimball,et al.  The Data Warehouse Toolkit: Practical Techniques for Building Dimensional Data Warehouses , 1996 .

[23]  Jian Pei,et al.  Answering ad hoc aggregate queries from data streams using prefix aggregate trees , 2007, Knowledge and Information Systems.

[24]  Sandro Bimonte,et al.  Conceptual model for spatial data cubes: A UML profile and its automatic implementation , 2015, Comput. Stand. Interfaces.

[25]  Mirian Halfeld Ferrari Alves,et al.  Incremental Maintenance of Data Warehouses Based on Past Temporal Logic Operators , 2004, J. Univers. Comput. Sci..

[26]  Jiawei Han,et al.  MAIDS: mining alarming incidents from data streams , 2004, SIGMOD '04.

[27]  Lukasz Golab,et al.  Issues in data stream management , 2003, SGMD.

[28]  Sharma Chakravarthy,et al.  Event-based lossy compression for effective and efficient OLAP over data streams , 2010, Data Knowl. Eng..

[29]  Guillaume Urvoy-Keller,et al.  Using Data Stream Management Systems for Traffic Analysis - A Case Study , 2004, PAM.

[30]  Torben Bach Pedersen,et al.  What Can Hierarchies Do for Data Streams? , 2006, BIRTE.

[31]  Jose-Norberto Mazón,et al.  An MDA Approach and QVT Transformations for the Integrated Development of Goal-Oriented Data Warehouses and Data Marts , 2011, J. Database Manag..

[32]  Omar Boussaïd,et al.  New Conceptual Modeling Requirements for Stream Data Warehouses (C) , 2012, INFORSID.

[33]  Theodore Johnson,et al.  Stream warehousing with DataDepot , 2009, SIGMOD Conference.