Subcritical approach to sharp Hardy–Littlewood–Sobolev type inequalities on the upper half space

[1]  V. H. Nguyen,et al.  Sharp Reversed Hardy–Littlewood–Sobolev Inequality on the Half Space $\mathbf{R}_+^n$ , 2015, 1510.04680.

[2]  Yazhou Han,et al.  Hardy–Littlewood–Sobolev inequalities on compact Riemannian manifolds and applications , 2015, 1502.02097.

[3]  Meijun Zhu,et al.  SHARP HARDY-LITTLEWOOD-SOBOLEV INEQUALITY ON THE UPPER HALF SPACE , 2013, 1309.2341.

[4]  Meijun Zhu,et al.  Reversed Hardy–Littewood–Sobolev Inequality , 2013, 1309.1974.

[5]  Shibing Chen A new family of sharp conformally invariant integral inequalities , 2010, 1008.1301.

[6]  Xiaodong Yan,et al.  Sharp integral inequalities for harmonic functions , 2006, math/0611340.

[7]  Yanyan Li Remark on some conformally invariant integral equations: the method of moving spheres , 2003, math/0307093.

[8]  William Beckner,et al.  Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality , 1993 .

[9]  Wenxiong Chen,et al.  Classification of solutions of some nonlinear elliptic equations , 1991 .

[10]  Elliott H. Lieb,et al.  Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities , 1983 .

[11]  Fred B. Weissler,et al.  Logarithmic Sobolev inequalities for the heat-diffusion semigroup , 1978 .

[12]  G. H. Hardy,et al.  Some properties of fractional integrals. I. , 1928 .

[13]  M. Ledoux,et al.  Logarithmic Sobolev Inequalities , 2014 .

[14]  S. Sobolev On a theorem in functional analysis , 1938 .

[15]  J. Littlewood,et al.  Notes on the Theory of Series (XII): On Certain Inequalities Connected with the Calculus of Variations , 1930 .